×

Multiple recurrent outbreak cycles in an autonomous epidemiological model due to multiple limit cycle bifurcation. (English) Zbl 1460.92227

The authors study a SI epidemiological model and analyze that the coexistence of multiple attractors attributes to the complex outbreak patterns. They first give the existence of an isolated center under some reasonable conditions, propose that the existence of Hopf bifurcation by properly perturbation, and obtain limit cycles around the center. They further prove that the maximum number of the coexisting limit cycles is three, and point out a corresponding set for the existence of the three limit cycles.

MSC:

92D30 Epidemiology
34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34D45 Attractors of solutions to ordinary differential equations
Full Text: DOI

References:

[1] S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual, P. Rohani,Seasonality and the dynamics of infectious diseases,Ecol. Lett., 2006, 9(4), 467-484.
[2] R. M. Anderson, R. M. May, B. Anderson,Infectious Diseases of Humans: Dynamics and Control,Oxford University Press Inc, New York, 1992.
[3] J. L. Aron,Multiple attractors in the response to a vaccination program,Theor. Popul. Biol., 1990, 38(1), 58-67. · Zbl 0699.92016
[4] J. L. Aron, I. B. Schwartz,Seasonality and period-doubling bifurcations in an epidemic model,J. Theor. Biol., 1984, 110(4), 665-679.
[5] K. M. Bakker, M. E. Martinez-Bakker, B. Helm, T. J. Stevenson,Digital epidemiology reveals global childhood disease seasonality and the effects of immunization,Proc. National Academy of Sciences, 2016, 113(24), 6689-6694.
[6] M. S. Bartlett,Measles periodicity and community size,J. Royal Statistical Soc., Series A (General), 1957, 120(1), 48-70.
[7] B. Bolker, B. Grenfell, B.Chaos and biological complexity in measles dynamics, Proc. R. Soc. Lond. B 251, 1993, (1330), 75-81.
[8] B. Buonomo, N. Chitnis, A. d’Onofrio,Seasonality in epidemic models: a literature review,Ricerche di Matematica, 2017, 67(1), 1-19.
[9] D. J. Earn, P. Rohani, B. M. Bolker, B. T. Grenfell,A simple model for complex dynamical transitions in epidemics,Science, 2000, 287(5453), 667-670.
[10] S. Ellner, B. Bailey, G. Bobashev, A. Gallant, B. Grenfell, D. Nychka,Noise and nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population modeling,AM Naturalist, 1998, 151(5), 425-440.
[11] S. D. Fretwell,Populations in a Seasonal Environment,Princeton University Press, Princeton, 1972.
[12] P. Glendinning, L. P. Perry,Melnikov analysis of chaos in a simple epidemiological model,J. Math. Biol., 1997, 35(3), 359-373. · Zbl 0867.92021
[13] N. C. Grassly, C. Fraser,Mathematical models of infectious disease transmission,Nat. Rev. Microbiol., 2008, 6(6), 477-487.
[14] B. Grenfell, J. Harwood,(Meta)population dynamics of infectious diseases, Trends Ecol. Evol., 1997, 12(10), 395-399.
[15] D. E. Griffin,Immune Responses During Measles Virus Infection,Springer, Berlin, Heidelberg, 1995, 117-134.
[16] M. Han, P. Yu,Normal forms, Melnikov functions and bifurcations of limit cycles,Vol. 181, Springer-Verlag, London, 2012. · Zbl 1252.37002
[17] H. W. Hethcote, P. van Den Driessche,Some epidemiological models with nonlinear incidence,J. Math. Biol., 1991, 29(3), 271-287. · Zbl 0722.92015
[18] S. A. Levin, B. Grenfell, A. Hastings, A. S. Perelson,Mathematical and computational challenges in population biology and ecosystems science,Science, 1997, 275(5298), 334-343. · Zbl 1225.92058
[19] W. M. Liu, H. W. Hethcote, S. A. Levin,Dynamical behavior of epidemiological models with nonlinear incidence rates,J. Math. Biol., 1987, 25(4), 359-380. · Zbl 0621.92014
[20] W. M. Liu, S. A. Levin, Y. Iwasa,Influence of nonlinear incidence rates upon the behavior of sirs epidemiological models,J. Math. Biol., 1986, 23(2), 187- 204. · Zbl 0582.92023
[21] W. P. London, J. A. Yorke,Recurrent outbreaks of measles, chickenpox and mumps: I. seasonal variation in contact rates,AM J. Epidemiol., 1973, 98(6), 453-468.
[22] L. F. Olsen, W. M. Schaffer,Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics,Science, 1990, 249(4968), 499-504.
[23] L. F. Olsen, G. L. Truty, W. M. Schaffer,Oscillations and chaos in epidemics: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark, Theor. Popul. Biol., 1988, 33(3), 344-370. · Zbl 0639.92012
[24] V. E. Pitzer, C. Viboud, W. J. Alonso, T. Wilcox, C. J. Metcalf, C. A. Steiner, A. K. Haynes, B. T. Grenfell,Environmental drivers of the spatiotemporal dynamics of respiratory syncytial virus in the united states,PLoS Pathogens, 2015, 11(1), e1004591.
[25] W. G. Van Panhuis, J. Grefenstette, S. Y. Jung, N. S. Chok, A. Cross, H. Eng, B. Y. Lee, V. Zadorozhny, S. Brown, D. Cummings, D. S. Burke,Contagious diseases in the united states from 1888 to the present,New Engl. J. Med., 2013, 369(22), 2152-2158.
[26] W. M. Schaffer, B. Kendall, C. W. Tidd, L. F. Olsen,Transient periodicity and episodic predictability in biological dynamics,IMA J. Math. Appl. Med. Biol., 1993, 10(4), 227-247. · Zbl 0791.92021
[27] D. Schenzle,An age-structured model of pre-and post-vaccination measles transmission,IMA J. Math. Appl. Med. Biol., 1984, 1(2), 169-191. · Zbl 0611.92021
[28] I. B. Schwartz,Multiple stable recurrent outbreaks and predictability in seasonally forced nonlinear epidemic models,J. Math. Biol., 1985, 21(3), 347-361. · Zbl 0558.92013
[29] H. Smith,Subharmonic bifurcation in an sir epidemic model,J. Math. Biol., 1983, 17(2), 163-177. · Zbl 0578.92023
[30] J. Wingfield, G. Kenagy,Natural Regulation of Reproductive Cycles, In Vertebrate Endocrinology: Fundamentals and Biomedical Implications(Eds. P. K. T. Pang and M. P. Schreibman), Vol. 4, Part B, 181-241, 1991.
[31] P. Yu,Computation of normal forms via a perturbation technique,J. Sound and Vib., 1998, 211(1), 19-38. · Zbl 1235.34126
[32] P. Yu, W. Zhang, L. M. Wahl,Dynamical analysis and simulation of a 2dimensional disease model with convex incidence,Commun. Nonlinear Sci. Numer. Simulat., 2016, 37, 163-192. · Zbl 1473.92043
[33] W. Zhang, L. M. Wahl, P. Yu,Conditions for transient viremia in deterministic in-host models: viral blips need no exogenous trigger,SIAM J. Appl. Math., 2013, 73(2), 853-881. · Zbl 1267.92051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.