×

Scale separation and dependence of entrainment bubble-size distribution in free-surface turbulence. (English) Zbl 1460.76813

Summary: We consider the size spectrum of entrained bubbles under strong free-surface turbulence (SFST). We investigate the entrainment bubble-size spectrum per unit (mean) interface area, \(\mathcal{N}_a^E(r)\), with dimension length\(^{-3}\), and develop a physical/mechanistic model for \(\mathcal{N}_a^E(r)\) through energy arguments. The model obtains two distinct regimes of \(\mathcal{N}_a^E(r)\), separated by bubble-size scale \(r_0\). For bubble radius \(r>r_0\), the effects of gravity \(g\) dominate those of the surface tension force \(\sigma/\rho\), and \(\mathcal{N}_a^E(r)\propto g^{-1} \epsilon^{2/3} r^{-10/3}\), where \(\epsilon\) is the turbulence dissipation rate. For \(r<r_0 \), surface tension is more important and \(\mathcal{N}_a^E(r)\propto (\sigma/\rho)^{-1} \epsilon^{2/3} r^{-4/3}\). From the model, we show that \(r_0\approx r_c=1/2 \sqrt{\sigma/\rho g}\), the capillary length scale, and not the generally assumed Hinze scale \(r_H\). For an air-water interface and Earth gravity, \(r_c\approx 1.5\) mm. The model provides an \(\epsilon -r\) entrainment regime map that identifies a critical dissipation rate \(\epsilon_{cr}\) (constant for given \(g\) and \(\sigma/\rho)\) above which there is appreciable air entrainment, thus separating SFST and weak FST. We confirm the theoretical model and its predictions using two-phase, high-fidelity direct numerical simulations of a canonical FST flow using the conservative volume-of-fluid method: the respective power laws of \(\mathcal{N}_a^E(r)\propto r^{-10/3}\) and \(r^{-4/3}\) for \(r>r_0\) and \(r<r_0\); the value \(r_0=r_c\); the scaling \(\mathcal{N}_a^E(r)\propto \epsilon^{2/3} \); and the predictions of the \(\epsilon -r\) entrainment regime map.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76F40 Turbulent boundary layers
76F65 Direct numerical and large eddy simulation of turbulence

References:

[1] Alméras, E., Mathai, V., Lohse, D. & Sun, C.2017Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence. J. Fluid Mech.825, 1091-1112.
[2] Blenkinsopp, C. E. & Chaplin, J. R.2010Bubble size measurements in breaking waves using optical fiber phase detection probes. IEEE J. Ocean. Engng35 (2), 388-401.
[3] Brocchini, M. & Peregrine, D. H.2001The dynamics of strong turbulence at free surfaces. Part 1. Description. J. Fluid Mech.449, 225-254. · Zbl 1007.76027
[4] Chanson, H.1996Air Bubble Entrainment in Free-surface Turbulent Shear Flows. Elsevier.
[5] Deane, G. B. & Stokes, M. D.2002Scale dependence of bubble creation mechanisms in breaking waves. Nature418 (6900), 839-844.
[6] Deike, L., Melville, W. K. & Popinet, S.2016Air entrainment and bubble statistics in breaking waves. J. Fluid Mech.801, 91-129. · Zbl 1462.76040
[7] Garrett, C., Li, M. & Farmer, D.2000The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr.30 (9), 2163-2171.
[8] Hendrickson, K., Weymouth, G. D., Yu, X. & Yue, D. K. P.2019Wake behind a three-dimensional dry transom stern. Part 1. Flow structure and large-scale air entrainment. J. Fluid Mech.875, 854-883. · Zbl 1419.76367
[9] Hinze, J. O.1955Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J.1 (3), 289-295.
[10] Lewis, D. A.1982Bubble splitting in shear flow. Trans. Inst. Chem. Engrs60, 283-291.
[11] Loewen, M. R., O’Dor, M. A. & Skafel, M. G.1996Bubbles entrained by mechanically generated breaking waves. J. Geophys. Res.101 (C9), 20759-20769.
[12] Martínez-Bazán, C., Montanes, J. L. & Lasheras, J. C.1999On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech.401, 157-182. · Zbl 0974.76087
[13] Rojas, G. & Loewen, M. R.2007Fiber-optic probe measurements of void fraction and bubble size distributions beneath breaking waves. Exp. Fluids43 (6), 895-906.
[14] Shen, L., Triantafyllou, G. S. & Yue, D. K. P.2000Turbulent diffusion near a free surface. J. Fluid Mech.407, 145-166. · Zbl 0966.76038
[15] Shen, L., Triantafyllou, G. S. & Yue, D. K. P.2001Mixing of a passive scalar near a free surface. Phys. Fluids13 (4), 913-926. · Zbl 1184.76499
[16] Shen, L. & Yue, D. K. P.2001Large-eddy simulation of free-surface turbulence. J. Fluid Mech.440, 75-116. · Zbl 1049.76034
[17] Shen, L., Zhang, X., Yue, D. K. P. & Triantafyllou, G. S.1999The surface layer for free-surface turbulent flows. J. Fluid Mech.386, 167-212. · Zbl 0938.76044
[18] Wang, Z., Yang, J. & Stern, F.2016High-fidelity simulations of bubble, droplet and spray formation in breaking waves. J. Fluid Mech.792, 307-327. · Zbl 1381.76365
[19] Weymouth, G. D. & Yue, D. K. P.2010Conservative volume-of-fluid method for free-surface simulations on Cartesian-grids. J. Comput. Phys.229 (8), 2853-2865. · Zbl 1307.76064
[20] Yu, X., Hendrickson, K., Campbell, B. K. & Yue, D. K. P.2019Numerical investigation of shear-flow free-surface turbulence and air entrainment at large Froude and Weber numbers. J. Fluid Mech.880, 209-238. · Zbl 1430.76235
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.