×

Frequency domain and time domain analysis of thermoacoustic oscillations with wave-based acoustics. (English) Zbl 1403.76177

Summary: Many thermoacoustic systems exhibit rich nonlinear behaviour. Recent studies show that this nonlinear dynamics can be well captured by low-order time domain models that couple a level set kinematic model for a laminar flame, the \(G\)-equation, with a state-space realization of the linearized acoustic equations. However, so far the \(G\)-equation has been coupled only with straight ducts with uniform mean acoustic properties, which is a simplistic configuration. In this study, we incorporate a wave-based model of the acoustic network, containing area and temperature variations and frequency-dependent boundary conditions. We cast the linear acoustics into state-space form using a different approach from that in the existing literature. We then use this state-space form to investigate the stability of the thermoacoustic system, both in the frequency and time domains, using the flame position as a control parameter. We observe frequency-locked, quasiperiodic and chaotic oscillations. We identify the location of Neimark-Sacker bifurcations with Floquet theory. We also find the Ruelle-Takens-Newhouse route to chaos with nonlinear time series analysis techniques. We highlight important differences between the nonlinear response predicted by the frequency domain and the time domain methods. This reveals deficiencies with the frequency domain technique, which is commonly used in academic and industrial studies of thermoacoustic systems. We then demonstrate a more accurate approach based on continuation analysis applied to time domain techniques.

MSC:

76Q05 Hydro- and aero-acoustics
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
80A20 Heat and mass transfer, heat flow (MSC2010)

References:

[1] DOI: 10.1260/1756-8277.2.4.325 · doi:10.1260/1756-8277.2.4.325
[2] DOI: 10.1080/00102207108952266 · doi:10.1080/00102207108952266
[3] DOI: 10.1016/S0022-460X(88)81408-1 · doi:10.1016/S0022-460X(88)81408-1
[4] Stow, Techincal Paper GT2004-54245 (2004)
[5] DOI: 10.1016/j.proci.2010.06.029 · doi:10.1016/j.proci.2010.06.029
[6] DOI: 10.1007/978-1-4612-1140-2 · Zbl 0515.34001 · doi:10.1007/978-1-4612-1140-2
[7] DOI: 10.1063/1.1710997 · Zbl 0116.17305 · doi:10.1063/1.1710997
[8] Gotoda, Phys. Rev. E 89 (2014)
[9] DOI: 10.1080/13647830.2010.502247 · Zbl 1216.80018 · doi:10.1080/13647830.2010.502247
[10] DOI: 10.1243/09576509JPE384 · doi:10.1243/09576509JPE384
[11] DOI: 10.1063/1.3563577 · doi:10.1063/1.3563577
[12] Sethian, Level Set Methods and Fast Marching Methods (1999) · Zbl 0929.65066
[13] DOI: 10.1023/A:1008298205786 · Zbl 0890.34033 · doi:10.1023/A:1008298205786
[14] DOI: 10.1098/rspa.2002.1085 · Zbl 1116.80309 · doi:10.1098/rspa.2002.1085
[15] DOI: 10.1016/S0010-2180(03)00042-7 · doi:10.1016/S0010-2180(03)00042-7
[16] DOI: 10.1017/S0022112003004518 · Zbl 1075.76057 · doi:10.1017/S0022112003004518
[17] DOI: 10.2514/2.6192 · doi:10.2514/2.6192
[18] DOI: 10.1115/1.4025299 · doi:10.1115/1.4025299
[19] DOI: 10.1137/0907058 · Zbl 0599.65018 · doi:10.1137/0907058
[20] DOI: 10.2514/1.35432 · doi:10.2514/1.35432
[21] DOI: 10.1006/jcph.1999.6345 · Zbl 0964.76069 · doi:10.1006/jcph.1999.6345
[22] DOI: 10.1017/S0022112008003613 · Zbl 1168.76056 · doi:10.1017/S0022112008003613
[23] DOI: 10.2514/1.24933 · doi:10.2514/1.24933
[24] DOI: 10.1260/1756-8277.4.1.1 · doi:10.1260/1756-8277.4.1.1
[25] DOI: 10.1016/j.jfluidstructs.2003.07.016 · doi:10.1016/j.jfluidstructs.2003.07.016
[26] Markstein, Non-Steady Flame Propagation (1964)
[27] DOI: 10.1260/1756-8277.3.4.331 · doi:10.1260/1756-8277.3.4.331
[28] DOI: 10.1017/CBO9781139059961 · Zbl 1284.80001 · doi:10.1017/CBO9781139059961
[29] DOI: 10.1016/0010-2180(87)90109-X · doi:10.1016/0010-2180(87)90109-X
[30] Khalil, Nonlinear Systems (2001)
[31] DOI: 10.1017/jfm.2014.601 · doi:10.1017/jfm.2014.601
[32] DOI: 10.1016/j.combustflame.2013.06.019 · doi:10.1016/j.combustflame.2013.06.019
[33] DOI: 10.1115/1.4023305 · doi:10.1115/1.4023305
[34] DOI: 10.1016/j.combustflame.2009.06.027 · doi:10.1016/j.combustflame.2009.06.027
[35] Kantz, Nonlinear Time Series Analysis (2004)
[36] DOI: 10.1115/1.4004402 · doi:10.1115/1.4004402
[37] DOI: 10.1017/jfm.2012.463 · Zbl 1284.76170 · doi:10.1017/jfm.2012.463
[38] DOI: 10.1080/00102207108952493 · doi:10.1080/00102207108952493
[39] DOI: 10.1063/1.4718725 · doi:10.1063/1.4718725
[40] DOI: 10.1080/00102209008951647 · doi:10.1080/00102209008951647
[41] DOI: 10.1017/jfm.2014.549 · doi:10.1017/jfm.2014.549
[42] DOI: 10.1016/j.jcp.2012.12.034 · doi:10.1016/j.jcp.2012.12.034
[43] DOI: 10.1016/0094-5765(76)90108-9 · doi:10.1016/0094-5765(76)90108-9
[44] DOI: 10.1016/j.jsv.2007.04.027 · doi:10.1016/j.jsv.2007.04.027
[45] Thompson, Nonlinear Dynamics and Chaos (2001)
[46] DOI: 10.1016/0094-5765(76)90107-7 · Zbl 0346.76062 · doi:10.1016/0094-5765(76)90107-7
[47] Heckl, Acustica 72 pp 63– (1990)
[48] DOI: 10.1017/S0022112099005686 · Zbl 0968.76092 · doi:10.1017/S0022112099005686
[49] DOI: 10.1017/S0022112097006484 · Zbl 0947.76094 · doi:10.1017/S0022112097006484
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.