×

On the inelastic Boltzmann equation for soft potentials with diffusion. (English) Zbl 1460.76685

Summary: We are concerned with the Cauchy problem of the inelastic Boltzmann equation for soft potentials, with a Laplace term representing the random background forcing. The inelastic interaction here is characterized by the non-constant restitution coefficient. We prove that under the assumption that the initial datum has bounded mass, energy and entropy, there exists a weak solution to this equation. The smoothing effect of weak solutions is also studied. In addition, it is shown the solution is unique and stable with respect to the initial datum provided that the initial datum belongs to \(L^2(R^3)\).

MSC:

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76T25 Granular flows
74E20 Granularity
35Q20 Boltzmann equations
Full Text: DOI

References:

[1] R. J. Alonso, Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data, Indiana Univ. Math. J, 58, 999-1022 (2009) · Zbl 1168.76047 · doi:10.1512/iumj.2009.58.3506
[2] R. J. Alonso; E. Carneiro; I. M. Gamba, Convolution inequalities for the Boltzmann collision operator, Commun. Math. Phys., 298, 293-322 (2010) · Zbl 1206.35187 · doi:10.1007/s00220-010-1065-0
[3] R. J. Alonso; B. Lods, Free cooling and high-energy tails of granular gases with variable restitution coefficient, SIAM J. Math. Anal., 42, 2499-2538 (2010) · Zbl 1419.76684 · doi:10.1137/100793979
[4] R. J. Alonso; B. Lods, Two proofs of Haff’s law for dissipative gases: the use of entropy and the weakly inelastic regime, J. Math. Anal. Appl., 397, 260-275 (2013) · Zbl 1255.35176 · doi:10.1016/j.jmaa.2012.07.045
[5] R. J. Alonso; B. Lods, Boltzmann model for viscoelastic particles: asymptotic behavior, pointwise lower bounds and regularity, Commun. Math. Phys., 331, 545-591 (2014) · Zbl 1305.35099 · doi:10.1007/s00220-014-2089-7
[6] M. Bisi; J. A. Carrillo; G. Toscani, Contractive Metrics for a Boltzmann equation for granular gases: Diffusive equillibria, J. Stat. Phys., 118, 301-331 (2005) · Zbl 1085.82008 · doi:10.1007/s10955-004-8785-5
[7] M. Bisi, J. A. Carrillo and G. Toscani, Decay rates in probability metrics towards homogeneous cooling states for the inelastic maxwell model, J. Stat. Phys., 124 (2006), 625-653. · Zbl 1135.82028
[8] A. V. Bobylev; J. A. Carrillo; I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Stat. Phys., 98, 743-773 (2000) · Zbl 1056.76071 · doi:10.1023/A:1018627625800
[9] A. V. Bobylev; C. Cercignani, Moment equations for a granular material in a thermal bath, J. Stat. Phys., 106, 547-567 (2002) · Zbl 1001.82092 · doi:10.1023/A:1013754205008
[10] A. V. Bobylev; C. Cercignani, Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions, J. Stat. Phys., 110, 333-375 (2003) · Zbl 1134.82324 · doi:10.1023/A:1021031031038
[11] C. Cercignani; R. Illner; C. Stoica, On diffusive equilibria in generalized kinetic theory, J. Stat. Phys., 105, 337-352 (2001) · Zbl 1051.82021 · doi:10.1023/A:1012246513712
[12] Y. Chen; L. He, Smoothing estimates for Boltzmann equation with full-range interactions: spatially homogeneous case, Arch. Ration. Mech. Anal., 201, 501-548 (2011) · Zbl 1318.76018 · doi:10.1007/s00205-010-0393-8
[13] S. H. Choi; S. Y. Ha, Global existence of classical solutions to the inelastic Vlasov-Poisson-Boltzmann system, J. Stat. Phys., 156, 948-974 (2014) · Zbl 1302.35365 · doi:10.1007/s10955-014-1041-8
[14] M. H. Ernst; E. Trizac; A. Barrat, The Boltzmann equation for driven systems of inelastic soft spheres, J. Stat. Phys., 124, 549-586 (2006) · Zbl 1134.82034 · doi:10.1007/s10955-006-9062-6
[15] N. Fournier; H. Guérin, Well-posedness of the spatially homogeneous Landau equation for soft potentials, J. Funct. Anal., 256, 2542-2560 (2008) · Zbl 1165.35467 · doi:10.1016/j.jfa.2008.11.008
[16] I. M. Gamba; V. Panferov; C. Villani, On the Boltzmann equation for diffusively excited granular media, Commun. Math. Phys., 246, 503-541 (2004) · Zbl 1106.82031 · doi:10.1007/s00220-004-1051-5
[17] T. Gustafsson, Global \(L^p\) properties for the spatially homogeneous Boltzmann equation, Arch. Rat. Mech. Anal., 103, 1-38 (1988) · Zbl 0656.76067 · doi:10.1007/BF00292919
[18] F. Meng; X. P. Yang, The existence and convergence of the Maxwell model for granular materials, Applicable Anal., 95, 2383-2396 (2016) · Zbl 1349.76868 · doi:10.1080/00036811.2015.1091068
[19] S. Mischler; C. Mouhot; M. Rodriguez Ricard, Cooling process for inelastic Boltzmann equations for hard spheres. Part I: The Cauchy problem, J. Stat. Phys., 124, 605-702 (2006) · Zbl 1135.82325 · doi:10.1007/s10955-006-9096-9
[20] S. Mischler; C. Mouhot, Cooling process for inelastic Boltzmann equations for hard spheres. Part II: Self-similar solutions and tail behavior, J. Stat. Phys., 124, 703-746 (2006) · Zbl 1135.82030 · doi:10.1007/s10955-006-9097-8
[21] S. Mischler; C. Mouhot, Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres, Commun. Math. Phys., 288, 431-502 (2009) · Zbl 1178.82056 · doi:10.1007/s00220-009-0773-9
[22] C. Mouhot; C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Arch. Ration. Mech. Anal., 173, 169-212 (2004) · Zbl 1063.76086 · doi:10.1007/s00205-004-0316-7
[23] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann equation and Landau equations, Arch. Ration. Mech. Anal., 143, 273-307 (1998) · Zbl 0912.45011 · doi:10.1007/s002050050106
[24] C. Villani, Mathematics of granular materials, J. Stat. Phys., 124, 781-822 (2006) · Zbl 1134.82040 · doi:10.1007/s10955-006-9038-6
[25] K. C. Wu, Global in time estimates for the spatially homogeneous Landau equation with soft potentials, J. Funct. Anal., 266, 3134-3155 (2014) · Zbl 1296.35112 · doi:10.1016/j.jfa.2013.11.005
[26] J. Wei; X. Zhang, On the Cauchy problem for the inelastic Boltzmann equation with external force, J. Stat. Phys., 146, 592-609 (2012) · Zbl 1235.82063 · doi:10.1007/s10955-011-0410-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.