Skip to main content
Log in

Boltzmann Model for Viscoelastic Particles: Asymptotic Behavior, Pointwise Lower Bounds and Regularity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the long-time behavior of a system of viscoelastic particles modeled with the homogeneous Boltzmann equation. We prove the existence of a universal Maxwellian intermediate asymptotic state with explicit rate of convergence towards it. Exponential lower pointwise bounds and propagation of regularity are also studied. These results can be seen as a generalization of several classical results holding for the pseudo-Maxwellian and constant normal restitution models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso R.J.: Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data. Indiana Univ. Math. J. 58, 999–1022 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alonso R.J., Lods B.: Free cooling and high-energy tails of granular gases with variable restitution coefficient. SIAM J. Math. Anal. 42, 2499–2538 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alonso R.J., Lods B.: Two proofs of Haff’s law for dissipative gases: the use of entropy and the weakly inelastic regime. J. Math. Anal. Appl. 397, 260–275 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alonso R.J., Lods B.: Uniqueness and regularity of steady states of the Boltzmann equation for viscoelastic hard-spheres driven by a thermal bath. Commun. Math. Sci. 11, 851–906 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bobylev A.V., Carrillo J.A., Gamba I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98, 743–773 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bobylev A.V., Gamba I.M., Panferov N.: Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. J. Stat. Phys. 116, 1651–1682 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bouchut F., Desvillettes L.: A proof of the smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoam. 14, 47–61 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brilliantov N.V., Pöschel T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  9. Carleman T.: Problèmes mathématiques dans la théorie cinétique des gaz. Publ. Sci. Inst. Mittag-Leffler. 2, Uppsala (1957)

    MATH  Google Scholar 

  10. Gamba I., Panferov V., Villani C.: On the Boltzmann equation for diffusively excited granular media. Commun. Math. Phys. 246, 503–541 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Mischler S., Mouhot C., Rodriguez Ricard M.: Cooling process for inelastic Boltzmann equations for hard-spheres, Part~I: the Cauchy problem. J. Stat. Phys. 124, 655–702 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Mischler S., Mouhot C.: Cooling process for inelastic Boltzmann equations for hard-spheres, Part~II: self-similar solution and tail behavior. J. Stat. Phys. 124, 655–702 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Mischler S., Mouhot C.: Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres. Commun. Math. Phys. 288, 431–502 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Mischler S., Mouhot C.: Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discret. Contin. Dyn. Syst. A 24, 159–185 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mouhot C., Villani C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Ration. Mech. Anal. 173, 169–212 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pulvirenti A., Wennberg B.: A Maxwellian lower bound for solutions to the Boltzmann equation. Commun. Math. Phys. 183, 145–160 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Schwager T., Pöschel T.: Coefficient of normal restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E 57, 650–654 (1998)

    Article  ADS  Google Scholar 

  18. Toscani G., Villani C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203, 667–706 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Villani C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234, 455–490 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Wennberg B.: Regularity in the Boltzmann equation and the Radon transform. Commun. Partial Differ. Equ. 19, 2057–2074 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Alonso.

Additional information

Communicated by L. Caffarelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, R., Lods, B. Boltzmann Model for Viscoelastic Particles: Asymptotic Behavior, Pointwise Lower Bounds and Regularity. Commun. Math. Phys. 331, 545–591 (2014). https://doi.org/10.1007/s00220-014-2089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2089-7

Keywords

Navigation