×

Deformation and dewetting of liquid films under gas jets. (English) Zbl 1460.76062

Summary: We study the deformation and dewetting of liquid films under impinging gas jets using experimental, analytical and numerical techniques. We first derive a reduced-order model (a thin-film equation) based on the long-wave assumption and on appropriate decoupling of the gas problem from that for the liquid. The model not only provides insight into relevant flow regimes, but is also used in conjunction with experimental data to guide more computationally prohibitive direct numerical simulations of the full governing equations. A unique feature of our modelling solution is the use of an efficient iterative procedure in order to update the interfacial deformation based on stresses originating from computational data. We show that both gas normal and tangential stresses are equally important for achieving accurate predictions. The interplay between these techniques allows us to study previously unreported flow features. These include finite-size effects of the host geometry, with consequences for flow and vortex formation inside the liquid, as well as the specific individual contributions from the non-trivial gas flow components on interfacial deformation. Dewetting phenomena are found to depend on either a dominant gas flow or contact line motion, with the observed behaviour (including healing effects) being explained using a bifurcation diagram of steady-state solutions in the absence of the gas flow.

MSC:

76A20 Thin fluid films
76T10 Liquid-gas two-phase flows, bubbly flows

Software:

Gerris; COMSOL

References:

[1] Abràmoff, M., Magalhães, P. & Ram, S.2004Image processing with ImageJ. Biophotonics Intl111, 36-42.
[2] Adib, M., Ehteram, M. A. & Tabrizi, H. B.2018Numerical and experimental study of oscillatory behavior of liquid surface agitated by high-speed gas jet. Appl. Math. Model.62, 510-525. · Zbl 1460.76776
[3] Afkhami, S., Buongiorno, J., Guion, A., Popinet, S., Saade, Y., Scardovelli, R. & Zaleski, S.2018Transition in a numerical model of contact line dynamics and forced dewetting. J. Comput. Phys.374, 1061-1093.
[4] Banks, R. B. & Chandrasekhara, D. V.1963Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface. J. Fluid Mech.15, 13-34.
[5] Berendsen, C. W. J., Zeegers, J. C. H. & Darhuber, A. A.2013Deformation and dewetting of thin liquid films induced by moving gas jets. J. Colloid Interface Sci.407, 505-515.
[6] Berendsen, C. W. J., Zeegers, J. C. H., Kruis, G. C. F. L., Riepen, M. & Darhuber, A. A.2012Rupture of thin liquid films induced by impinging air-jets. Langmuir28, 9977-9985.
[7] Berghmans, J.1972Stability of a gas-liquid interface and its relation to weld pool stability. J. Phys. D5, 1096-1105.
[8] Bostwick, J. B., Dijksman, J. A. & Shearer, M.2017Wetting dynamics of a collapsing fluid hole. Phys. Rev. Fluids2, 014006.
[9] Cheslak, F. R., Nicholls, J. A. & Sichel, M.1969Cavities formed on liquid surfaces by impinging gaseous jets. J. Fluid Mech.36, 55-63.
[10] Clancy, J. L.2006Aerodynamics. Sterling Book House.
[11] Craster, R. V. & Matar, O. K.2009Dynamics and stability of thin liquid films. Rev. Mod. Phys.81, 1131-1198.
[12] Davis, M. J., Gratton, M. B. & Davis, S. H.2010Suppressing van der Waals driven rupture through shear. J. Fluid Mech.661, 522-539. · Zbl 1205.76115
[13] Denner, F., Pradas, M., Charogiannis, Al., Markides, C. N., Van Wachem, B. G. M. & Kalliadasis, S.2016Self-similarity of solitary waves on inertia-dominated falling liquid films. Phys. Rev. E93, 033121. · Zbl 1419.76047
[14] Dijksman, J. A., Mukhopadhyay, S., Gaebler, C., Witelski, T. P. & Behringer, R. P.2015Obtaining self-similar scalings in focusing flows. Phys. Rev. E92, 043016.
[15] Foster, J. E.2017Plasma-based water purification: challenges and prospects for the future. Phys. Plasmas24, 055501.
[16] Galvagno, M., Tseluiko, D., Lopez, H. & Thiele, U.2014Continuous and discontinuous dynamic unbinding transitions in drawn film flow. Phys. Rev. Lett.112, 137803.
[17] De Gennes, P.-G., Brochard-Wyart, F. & Quéré, D.2013Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer. · Zbl 1139.76004
[18] He, A. & Belmonte, A.2010Deformation of a liquid surface due to an impinging gas jet: a conformal mapping approach. Phys. Fluids22, 042103. · Zbl 1190.76047
[19] Hughes, A. P., Thiele, U. & Archer, A. J.2015Liquid drops on a surface: using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling. J. Chem. Phys.142, 074702.
[20] Hwang, H. Y. & Irons, G. A.2012A water model study of impinging gas jets on liquid surfaces. Metall. Mater. Trans. B43, 302-315.
[21] Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. G.2011Falling Liquid Films. , vol. 176. Springer. · Zbl 1231.76001
[22] Kriegsmann, J. J., Miksis, M. J. & Vanden-Broeck, J.-M.1998Pressure driven disturbances on a thin viscous film. Phys. Fluids10, 1249-1255. · Zbl 1185.76547
[23] Lacanette, D., Gosset, A., Vincent, S., Buchlin, J.-M. & Arquis, É.2006Macroscopic analysis of gas-jet wiping: numerical simulation and experimental approach. Phys. Fluids18, 042103.
[24] Liu, Q., Chen, W., Hu, L., Xie, H. & Fu, X.2015Experimental investigation of cavity stability for a gas-jet penetrating into a liquid sheet. Phys. Fluids27, 082106.
[25] Lunz, D. & Howell, P. D.2018Dynamics of a thin film driven by a moving pressure source. Phys. Rev. Fluids3, 114801.
[26] Molloy, N. A.1970Impinging jet flow in a two-phase system: the basic flow pattern. J. Iron Steel Inst.208, 943-950.
[27] Mordasov, M. M., Savenkov, A. P. & Chechetov, K. E.2016Method for analyzing the gas jet impinging on a liquid surface. Tech. Phys.61, 659-668.
[28] Muñoz-Esparza, D., Buchlin, J. M., Myrillas, K. & Berger, R.2012Numerical investigation of impinging gas jets onto deformable liquid layers. Appl. Math. Model.36, 2687-2700. · Zbl 1246.76133
[29] Nguyen, A. V. & Evans, G. M.2006Computational fluid dynamics modelling of gas jets impinging onto liquid pools. Appl. Math. Model.30, 1472-1484. · Zbl 1375.76065
[30] Olmstead, W. E. & Raynor, S.1964Depression of an infinite liquid surface by an incompressible gas jet. J. Fluid Mech.19, 561-576. · Zbl 0126.21203
[31] Pismen, L. M.2002Mesoscopic hydrodynamics of contact line motion. Colloids Surf. A206, 11-30.
[32] Popinet, S.2009An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys.228, 5838-5866. · Zbl 1280.76020
[33] Pryor, R. W.2011Multiphysics Modeling using COMSOL®: A First Principles Approach. Jones & Bartlett Learning.
[34] Rauscher, M. & Dietrich, S.2008Wetting phenomena in nanofluidics. Annu. Rev. Mater. Res.38, 143-172.
[35] Ruyer-Quil, C. & Manneville, P.2000Improved modeling of flows down inclined planes. Eur. Phys. J. B15, 357-369. · Zbl 1184.76467
[36] Sibley, D. N., Savva, N. & Kalliadasis, S.2012Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system. Phys. Fluids24, 082105.
[37] Solórzano-López, J., Zenit, R. & Ramírez-Argáez, M. A.2011Mathematical and physical simulation of the interaction between a gas jet and a liquid free surface. Appl. Math. Model.35, 4991-5005. · Zbl 1228.76179
[38] Sullivan, J. M., Wilson, S. K. & Duffy, B. R.2008A thin rivulet of perfectly wetting fluid subject to a longitudinal surface shear stress. Q. J. Mech. Appl. Maths61, 25-61. · Zbl 1131.76021
[39] Thiele, U.2007Structure formation in thin liquid films. In Thin Films of Soft Matter, pp. 25-93. Springer. · Zbl 1298.76030
[40] Thornton, J. A. & Graff, H. F.1976An analytical description of the jet finishing process for hot-dip metallic coatings on strip. Metall. Trans. B7, 607-618.
[41] Tian, W. & Kushner, M. J.2014Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue. J. Phys. D47, 165201.
[42] Tseluiko, D. & Kalliadasis, S.2011Nonlinear waves in counter-current gas-liquid film flow. J. Fluid Mech.673, 19-59. · Zbl 1225.76044
[43] Tuck, E. O.1975On air flow over free surfaces of stationary water. ANZIAM J.19, 66-80. · Zbl 0322.76003
[44] Turkdogan, E. T.1966Fluid dynamics of gas jets impinging on surface of liquids. Chem. Engng Sci.21, 1133-1144.
[45] Turkdogan, E. T.1996Fundamentals of Steelmaking. Institute of Materials.
[46] Vanden-Broeck, J. M.1981Deformation of a liquid surface by an impinging gas jet. SIAM J. Appl. Maths41, 306-309. · Zbl 0478.76020
[47] Vellingiri, R., Tseluiko, D. & Kalliadasis, S.2015Absolute and convective instabilities in counter-current gas-liquid film flows. J. Fluid Mech.763, 166-201. · Zbl 1329.76119
[48] Verlackt, C. C. W., Van Boxem, W. & Bogaerts, A.2018Transport and accumulation of plasma generated species in aqueous solution. Phys. Chem. Chem. Phys.20, 6845-6859.
[49] Witelski, T. P. & Bernoff, A. J.2000Dynamics of three-dimensional thin film rupture. Physica D147, 155-176. · Zbl 0992.76013
[50] Zheng, Z., Fontelos, M. A., Shin, S., Dallaston, M. C., Tseluiko, D., Kalliadasis, S. & Stone, H. A.2018Healing capillary films. J. Fluid Mech.838, 404-434. · Zbl 1419.76062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.