×

On the strong convergence of a projection-based algorithm in Hilbert spaces. (English) Zbl 1460.49006

Summary: In this paper, we introduce a new projection-based algorithm for solving variational inequality problems with a Lipschitz continuous pseudo-monotone mapping in Hilbert spaces. We prove a strong convergence of the generated sequences. The numerical behaviors of the proposed algorithm on test problems are illustrated and compared with previously known algorithms.

MSC:

49J40 Variational inequalities
49J45 Methods involving semicontinuity and convergence; relaxation
65K10 Numerical optimization and variational techniques
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
47J20 Variational and other types of inequalities involving nonlinear operators (general)
Full Text: DOI

References:

[1] H. Attouch, J. Peypouquet and P. Redont,A dynamical approach to an inertial forward-backward algorithm for convex minimization, SIAM J. Optim., 2014, 24, 232-256. · Zbl 1295.90044
[2] H. Attouch and A. Cabot,Convergence rates of inertial forward-backward algorithms, SIAM J. Optim., 2018, 28, 849-874. · Zbl 1387.49047
[3] Q.H. Ansari, F. Babu and J.C. Yao,Regularization of proximal point algorithms in Hadamard manifolds, J. Fixed Point Theory Appl., 2019, 21(1), 25. · Zbl 1412.49037
[4] F. Alvarez,Weak convergence of a relaxed and inertial hybrid projectionproximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 2004, 14, 773-782. · Zbl 1079.90096
[5] A. Beck and M. Teboulle,A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2009, 2, 183-202. · Zbl 1175.94009
[6] R.I. Bot¸ and E.R. Csetnek,A hybrid proximal-extragradient algorithm with inertial effects, Numer. Funct. Anal. Optim., 2015, 36, 951-963. · Zbl 06514880
[7] R.I. Bot¸ and E.R. Csetnek,An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems, Numer. Algo., 2016, 71, 519-540. · Zbl 1338.47076
[8] V. Barbu,Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Amsterdam. 1976. · Zbl 0328.47035
[9] S.Y. Cho,Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space, J. Appl. Anal. Comput., 2018, 8, 19-31. · Zbl 07303041
[10] S.Y. Cho and S.M. Kang,Approximation of common solutions of variational inequalities via strict pseudocontractions, Acta Math. Sci., 2012, 32, 1607-1618. · Zbl 1271.47055
[11] S.Y. Cho, W. Li and S.M. Kang,Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl., 2013, 1, 199. · Zbl 1364.47017
[12] S.Y. Cho and S.M. Kang,Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative process,Appl. Math. Lett., 2011, 24, 224-228. · Zbl 1256.47044
[13] S.S. Chang, C.F. Wen and J.C. Yao,Common zero point for a finite family of inclusion problems of accretive mappings in Banach spaces, Optimization, 2018, 67, 1183-1196. · Zbl 1402.90119
[14] S.S. Chang, C.F. Wen and J.C. Yao,Zero point problem of accretive operators in Banach spaces, Bull. Malaysian Math. Sci. Soc. 2019, 42, 105-118. · Zbl 1493.47084
[15] L.C. Ceng, Q.H. Ansari and J.C. Yao,An extragradient method for solving split feasibility and fixed point problems, Comput. Math. Appl., 2012, 64, 633-642. · Zbl 1252.65102
[16] Y. Censor, A. Gibali and S. Reich,The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 2011, 148, 318-335. · Zbl 1229.58018
[17] Y. Censor, A. Gibali and S. Reich,Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw., 2011, 26, 827-845. · Zbl 1232.58008
[18] R.W. Cottle and J.C. Yao,Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 1992, 75, 281-295. · Zbl 0795.90071
[19] J. Chen, E. Kobis, J.C. Yao,Optimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraints, J. Optim. Theory Appl., 2019, 181, 411-436. · Zbl 1451.90139
[20] D.V. Hieu, P.K. Anh and L.D. Muu,Modified hybrid projection methods for finding common solutions to variational inequality problems, Comput. Optim. Appl., 2017, 66, 75-96. · Zbl 1368.65103
[21] X. Hu and J. Wang,Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network, IEEE Trans. Neural Networks, 2006, 17, 1487-1499.
[22] G.M. Korpelevich,The extragradient method for finding saddle points and other problems, Matecon, 1976, 12, 747-756. · Zbl 0342.90044
[23] S. Karamardian and S. Scchaible,Seven kinds of monotone maps, J. Optim. Theory Appl., 1990, 66, 37-46. · Zbl 0679.90055
[24] L. Liu,A hybrid steepest descent method for solving split feasibility problems involving nonexpansive mappings, J. Nonlinear Convex Anal. 20 (2019), 471488. · Zbl 1478.47081
[25] D.A. Lorenz and T. Pock,An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision., 2015, 51, 311-325. · Zbl 1327.47063
[26] P.E. Maing´e,Strong convergence of projected reflected gradient methods for variational inequalities, Fixed Point Theory, 2018, 19, 659-680. · Zbl 1460.65083
[27] P.E. Maing´e,Regularized and inertial algorithms for common fixed points of nonlinear operators, J. Math. Anal. Appl., 2008, 34, 876-887. · Zbl 1146.47042
[28] A. Moudafi and M. Oliny,Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 2003, 155, 447-454. · Zbl 1027.65077
[29] Y.V. Malitsky and V.V. Semenov,A hybrid method without extrapolation step for solving variational inequality problems, J. Global Optim., 2015, 61, 193-202. · Zbl 1366.47018
[30] N. Nadezhkina and W. Takahashi,Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim., 2006, 16, 1230-1241. · Zbl 1143.47047
[31] B.T. Polyak,Some methods of speeding up the convergence of iteration methods, Comput. Math. Math. Phys., 1964, 4, 1-17. · Zbl 0147.35301
[32] X. Qin and N.T. An,Smoothing algorithms for computing the projection onto a Minkowski sum of convex sets, Comput. Optim. Appl., 2019, https://doi.org/10.1007/s10589-019-00124-7. · Zbl 1427.90268
[33] W. Takahashi, C.F. Wen and J.C. Yao,The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point Theory, 2018, 19, 407-419. · Zbl 1462.47043
[34] D.V. Thong and D.V. Hieu,An inertial method for solving split common fixed point problems, J. Fixed Point Theory Appl., 2017, 19, 3029-3051. · Zbl 1482.65084
[35] X. Zhao, K.F. Ng, C. Li and J.C. Yao,Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems, Appl. Math. Optim., 2018, 78, 613-641. · Zbl 1492.47089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.