×

Zero point problem of accretive operators in Banach spaces. (English) Zbl 1493.47084

Summary: Splitting methods have recently received much attention due to the fact that many nonlinear problems arising in applied areas such as image recovery, signal processing and machine learning are mathematically modeled as a nonlinear operator equation and this operator is decomposed as the sum of two (possibly simpler) nonlinear operators. Most of the investigation on splitting methods is however carried out in the framework of Hilbert spaces. In this paper, we consider these methods in the setting of Banach spaces. We shall introduce a viscosity iterative forward-backward splitting method with errors to find zeros of the sum of two accretive operators in Banach spaces. We shall prove the strong convergence of the method under mild conditions. We also discuss applications of these methods to monotone variational inequalities, convex minimization problem and convexly constrained linear inverse problem.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H06 Nonlinear accretive operators, dissipative operators, etc.
Full Text: DOI

References:

[1] Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103-120 (2004) · Zbl 1051.65067 · doi:10.1088/0266-5611/20/1/006
[2] Chen, G.H.G., Rockafellar, R.T.: Convergence rates in forward – backward splitting. SIAM J. Optim. 7, 421-444 (1997) · Zbl 0876.49009 · doi:10.1137/S1052623495290179
[3] Cholamjiak, P.: A generalized forward-backward splitting method for solving quasi inclusion problems in Banach spaces. Numer. Algorithms doi:10.1007/s11075-015-0030-6 · Zbl 1342.47079
[4] Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer Academic Publishers, Dordrecht (1990) · Zbl 0712.47043 · doi:10.1007/978-94-009-2121-4
[5] Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16, 727-748 (2009) · Zbl 1193.47067
[6] Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward – backward splitting. Multiscale Model. Simul. 4, 1168-1200 (2005) · Zbl 1179.94031 · doi:10.1137/050626090
[7] Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403-419 (1991) · Zbl 0737.90047 · doi:10.1137/0329022
[8] He, S., Yang, C.: Solving the variational inequality problem defined on intersection of finite level sets. Abstr. Appl. Anal. 2013, 8 (2013) · Zbl 1273.47099
[9] Kamimura, S., Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106, 226-240 (2000) · Zbl 0992.47022 · doi:10.1006/jath.2000.3493
[10] Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964-979 (1979) · Zbl 0426.65050 · doi:10.1137/0716071
[11] López, G., Martín-Márquez, V., Wang, F., Xu, H.K.: Forward-Backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. 2012, 25 (2012) · Zbl 1252.47043 · doi:10.1155/2012/109236
[12] Maingǐe, P.E.: Approximation method for common fixed points of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 325, 469-479 (2007) · Zbl 1111.47058 · doi:10.1016/j.jmaa.2005.12.066
[13] Marino, G., Xu, H.K.: Convergence of generalized proximal point algorithm. Commun. Pure Appl. Anal. 3, 791-808 (2004) · Zbl 1095.90115 · doi:10.3934/cpaa.2004.3.791
[14] Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383-390 (1979) · Zbl 0428.47039 · doi:10.1016/0022-247X(79)90234-8
[15] Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287-292 (1980) · Zbl 0437.47047 · doi:10.1016/0022-247X(80)90323-6
[16] Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75-88 (1970) · Zbl 0222.47017 · doi:10.1090/S0002-9947-1970-0282272-5
[17] Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877-898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[18] Saewan, S., Kumam, P., Cho, Y.J.: Strong convergence for maximal monotone operators, relatively quasi- nonexpansive mappings, variational inequalities and equilibrium problems. J. Glob. Optim. 57, 1299-1318 (2013) · Zbl 1357.47076 · doi:10.1007/s10898-012-0030-1
[19] Sra, S., Nowozin, S., Wright, S.J. (eds): Optimization for Machine Learning. Neural Information Processing series. The MIT Press, Cambridge, MA (2011)
[20] Takahashi, W., Wong, N.C., Yao, J.C.: Two generalized strong convergence theorems of Halpern’s type in Hilbert spaces and applications. Taiwan. J. Math. 16, 1151-1172 (2012) · Zbl 1515.47106 · doi:10.11650/twjm/1500406684
[21] Tseng, P.: A modified forward – backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431-446 (2000) · Zbl 0997.90062 · doi:10.1137/S0363012998338806
[22] Wang, F., Cui, H.: On the contraction-proximal point algorithms with multi-parameters. J. Glob. Optim. 54, 485-491 (2012) · Zbl 1298.47078 · doi:10.1007/s10898-011-9772-4
[23] Yao, Y., Liou, Y.C., Yao, J.C.: Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction. Fixed Point Theory Appl. 2015, 127, 19 (2015). doi:10.1186/s13663-015-0376-4 · Zbl 1346.47077
[24] Yao, Y., Liou, Y.C.,Yao, J.C.: Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings. Fixed Point Theory Appl. 2007, Article ID 64363, 12 (2007). doi:10.1155/2007/64363 · Zbl 1153.54024
[25] Yao, Y., Chen, R., Yao, J.C.: Strong convergence and certain control conditions for modified Mann iteration. Nonlinear Anal. 68, 1687-1693 (2008) · Zbl 1189.47071 · doi:10.1016/j.na.2007.01.009
[26] Yao, Y., Liou, Y.C., Yao, J.C.: Finding the minimum norm common element of maximal monotone operators and nonexpansive mappings without involving projection. J. Nonlinear Convex Anal. 16, 835-854 (2015) · Zbl 1322.49019
[27] Yao, Y., Noor, M.A.: On convergence criteria of generalized proximal point algorithms. J. Comput. Appl. Math. 217, 46-55 (2008) · Zbl 1147.65049 · doi:10.1016/j.cam.2007.06.013
[28] Zhou, H.Y.: Iterative Methods of Fixed Points and Zeros with Applications. National Defense Industry Press, Beijing (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.