×

Unified mechanism of inverse stochastic resonance for monostability and bistability in Hindmarsh-rose neuron. (English) Zbl 1459.34123

Summary: Noise is ubiquitous and has been verified to play constructive roles in various systems, among which the inverse stochastic resonance (ISR) has aroused much attention in contrast to positive effects such as stochastic resonance. The ISR has been observed in both bistable and monostable systems for which the mechanisms are revealed as noise-induced biased switching and noise-enhanced stability, respectively. In this paper, we investigate the ISR phenomenon in the monostable and bistable Hindmarsh-Rose neurons within a unified framework of large deviation theory. The critical noise strengths for both cases can be obtained by matching the timescales between noise-induced boundary crossing and the limit cycle. Furthermore, different stages of ISR are revealed by the bursting frequency distribution, where the gradual increase of the peak bursting frequency can also be explained within the same framework. The perspective and results in this paper may shed some light on the understanding of the noise-induced complex phenomena in stochastic dynamical systems.
©2021 American Institute of Physics

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34F15 Resonance phenomena for ordinary differential equations involving randomness
34D20 Stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Benzi, R.; Sutera, A.; Vulpiani, A., The mechanism of stochastic resonance, J. Phys. A: Math. Gen., 14, L453 (1981) · doi:10.1088/0305-4470/14/11/006
[2] Gammaitoni, L.; Hänggi, P.; Jung, P.; Marchesoni, F., Stochastic resonance, Rev. Mod. Phys., 70, 223-287 (1998) · doi:10.1103/RevModPhys.70.223
[3] Lindner, B.; García-Ojalvo, J.; Neiman, A.; Schimansky-Geier, L., Effects of noise in excitable systems, Phys. Rep., 392, 321-424 (2004) · doi:10.1016/j.physrep.2003.10.015
[4] Pikovsky, A. S.; Kurths, J., Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett., 78, 775-778 (1997) · Zbl 0961.70506 · doi:10.1103/PhysRevLett.78.775
[5] Hussein, R.; Kohler, S.; Bayer, J. C.; Wagner, T.; Haug, R. J., Spectral properties of stochastic resonance in quantum transport, Phys. Rev. Lett., 125, 206801 (2020) · doi:10.1103/PhysRevLett.125.206801
[6] Simonotto, E.; Riani, M.; Seife, C.; Roberts, M.; Twitty, J.; Moss, F., Visual perception of stochastic resonance, Phys. Rev. Lett., 78, 1186-1189 (1997) · doi:10.1103/PhysRevLett.78.1186
[7] Tiwari, I.; Phogat, R.; Parmananda, P.; Ocampo-Espindola, J. L.; Rivera, M., Intrinsic periodic and aperiodic stochastic resonance in an electrochemical cell, Phys. Rev. E, 94, 022210 (2016) · doi:10.1103/PhysRevE.94.022210
[8] Dodda, A.; Oberoi, A.; Sebastian, A.; Choudhury, T. H.; Redwing, J. M.; Das, S., Stochastic resonance in MoS \({}_2\) photodetector, Nat. Commun., 11, 4406 (2020) · doi:10.1038/s41467-020-18195-0
[9] Qiao, Z.; Lei, Y.; Li, N., Applications of stochastic resonance to machinery fault detection: A review and tutorial, Mech. Syst. Signal Process., 122, 502-536 (2019) · doi:10.1016/j.ymssp.2018.12.032
[10] Litak, G.; Friswell, M. I.; Adhikari, S., Magnetopiezoelastic energy harvesting driven by random excitations, Appl. Phys. Lett., 96, 214103 (2010) · doi:10.1063/1.3436553
[11] Longtin, A., Autonomous stochastic resonance in bursting neurons, Phys. Rev. E, 55, 868-876 (1997) · doi:10.1103/PhysRevE.55.868
[12] Li, H.; Sun, X.; Xiao, J., Stochastic multiresonance in coupled excitable FHN neurons, Chaos, 28, 043113 (2018) · doi:10.1063/1.4997679
[13] Vilar, J. M.; Rubí, J. M., Stochastic multiresonance, Phys. Rev. Lett., 78, 2882-2885 (1997) · doi:10.1103/PhysRevLett.78.2882
[14] Semenova, N.; Zakharova, A.; Anishchenko, V.; Schöll, E., Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett., 117, 014102 (2016) · doi:10.1103/PhysRevLett.117.014102
[15] Xu, Y.; Lu, L.; Ge, M.; Jia, Y., Effects of temporally correlated noise on coherence resonance chimeras in FitzHugh-Nagumo neurons, Eur. Phys. J. B, 92, 245 (2019) · doi:10.1140/epjb/e2019-100413-0
[16] Gutkin, B. S.; Jost, J.; Tuckwell, H. C., Transient termination of spiking by noise in coupled neurons, Europhys. Lett., 81, 20005 (2008) · doi:10.1209/0295-5075/81/20005
[17] Paydarfar, D.; Forger, D. B.; Clay, J. R., Noisy inputs and the induction of on-off switching behavior in a neuronal pacemaker, J. Neurophysiol., 96, 3338-3348 (2006) · doi:10.1152/jn.00486.2006
[18] Sim, K. C.; Forger, D. B., Modeling the electrophysiology of suprachiasmatic nucleus neurons, J. Biol. Rhythms, 22, 445-453 (2007) · doi:10.1177/0748730407306041
[19] Gutkin, B. S.; Jost, J.; Tuckwell, H. C., Inhibition of rhythmic neural spiking by noise: The occurrence of a minimum in activity with increasing noise, Naturwissenschaften, 96, 1091-1097 (2009) · doi:10.1007/s00114-009-0570-5
[20] Buchin, A.; Rieubland, S.; Häusser, M.; Gutkin, B. S.; Roth, A., Inverse stochastic resonance in cerebellar Purkinje cells, PLoS Comput. Biol., 12, e1005000 (2016) · doi:10.1371/journal.pcbi.1005000
[21] Uzuntarla, M.; Barreto, E.; Torres, J. J., Inverse stochastic resonance in networks of spiking neurons, PLoS Comput. Biol., 13, e1005646 (2017) · doi:10.1371/journal.pcbi.1005646
[22] Guo, D., Inhibition of rhythmic spiking by colored noise in neural systems, Cogn. Neurodyn., 5, 293-300 (2011) · doi:10.1007/s11571-011-9160-2
[23] Huh, J. H., Inverse stochastic resonance in electroconvection by multiplicative colored noise, Phys. Rev. E, 94, 052702 (2016) · doi:10.1103/PhysRevE.94.052702
[24] Li, D.; Cui, X.; Yang, Y., Inverse stochastic resonance induced by non-Gaussian colored noise, Neurocomputing, 287, 52-57 (2018) · doi:10.1016/j.neucom.2018.01.078
[25] Lu, L.; Jia, Y.; Ge, M.; Xu, Y.; Li, A., Inverse stochastic resonance in Hodgkin-Huxley neural system driven by Gaussian and non-Gaussian colored noises, Nonlinear Dyn., 100, 877-889 (2020) · doi:10.1007/s11071-020-05492-y
[26] Yamakou, M. E.; Jost, J., A simple parameter can switch between different weak-noise-induced phenomena in a simple neuron model, Europhys. Lett., 120, 18002 (2017) · doi:10.1209/0295-5075/120/18002
[27] Uzuntarla, M.; Cressman, J. R.; Ozer, M.; Barreto, E., Dynamical structure underlying inverse stochastic resonance and its implications, Phys. Rev. E, 88, 042712 (2013) · doi:10.1103/PhysRevE.88.042712
[28] Torres, J. J.; Uzuntarla, M.; Marro, J., A theoretical description of inverse stochastic resonance in nature, Commun. Nonlinear Sci. Numer. Simul., 80, 104975 (2020) · Zbl 1451.92078 · doi:10.1016/j.cnsns.2019.104975
[29] Bačić, I.; Franović, I., Two paradigmatic scenarios for inverse stochastic resonance, Chaos, 30, 033123 (2020) · Zbl 1435.34060 · doi:10.1063/1.5139628
[30] Freidlin, M. I.; Wentzell, A. D., Random Perturbations of Dynamical Systems (2012), Springer: Springer, Berlin · Zbl 1267.60004
[31] Hindmarsh, J. L.; Rose, R. M., A model of the nerve impulse using two first-order differential equations, Nature, 296, 162-164 (1982) · doi:10.1038/296162a0
[32] Hindmarsh, J. L.; Rose, R. M., A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. Lond. B: Biol. Sci., 221, 87-102 (1984) · doi:10.1098/rspb.1984.0024
[33] Izhikevich, E. M., Neural excitability, spiking and bursting, Int. J. Bifurcat. Chaos, 10, 1171-1266 (2000) · Zbl 1090.92505 · doi:10.1142/S0218127400000840
[34] Wang, X. J., Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle, Physica D, 62, 263-274 (1993) · Zbl 0783.58053 · doi:10.1016/0167-2789(93)90286-A
[35] Berglund, N.; Gentz, B., Noise-Induced Phenomena in Slow-Fast Dynamical Systems: A Sample-Paths Approach (2006), Springer Science & Business Media: Springer Science & Business Media, Berlin · Zbl 1098.37049
[36] Faisal, A. A.; Selen, L. P.; Wolpert, D. M., Noise in the nervous system, Nat. Rev. Neurosci., 9, 292-303 (2008) · doi:10.1038/nrn2258
[37] McDonnell, M. D.; Ward, L. M., The benefits of noise in neural systems: Bridging theory and experiment, Nat. Rev. Neurosci., 12, 415-425 (2011) · doi:10.1038/nrn3061
[38] Tuckwell, H. C.; Jost, J.; Gutkin, B. S., Inhibition and modulation of rhythmic neuronal spiking by noise, Phys. Rev. E, 80, 031907 (2009) · doi:10.1103/PhysRevE.80.031907
[39] Uzuntarla, M., Inverse stochastic resonance induced by synaptic background activity with unreliable synapses, Phys. Lett. A, 377, 2585-2589 (2013) · Zbl 1311.92054 · doi:10.1016/j.physleta.2013.08.009
[40] Heymann, M.; Vanden-Eijnden, E., The geometric minimum action method: A least action principle on the space of curves, Commun. Pure Appl. Math., 61, 1052-1117 (2008) · Zbl 1146.60046 · doi:10.1002/cpa.20238
[41] Kramers, H., Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, 7, 284-304 (1940) · Zbl 0061.46405 · doi:10.1016/S0031-8914(40)90098-2
[42] Dahiya, D.; Cameron, M., Ordered line integral methods for computing the quasi-potential, J. Sci. Comput., 75, 1351-1384 (2018) · Zbl 1395.65150 · doi:10.1007/s10915-017-0590-9
[43] Dahiya, D.; Cameron, M., An ordered line integral method for computing the quasi-potential in the case of variable anisotropic diffusion, Physica D, 382-383, 33-45 (2018) · Zbl 1415.65017 · doi:10.1016/j.physd.2018.07.002
[44] Baspinar, E.; Schülen, L.; Olmi, S.; Zakharova, A.
[45] Lacasta, A. M.; Sagués, F.; Sancho, J. M., Coherence and anticoherence resonance tuned by noise, Phys. Rev. E, 66, 4 (2002) · doi:10.1103/PhysRevE.66.045105
[46] Lindner, B.; Schimansky-Geier, L.; Longtin, A., Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model, Phys. Rev. E, 66, 031916 (2002) · doi:10.1103/PhysRevE.66.031916
[47] Luccioli, S.; Kreuz, T.; Torcini, A., Dynamical response of the Hodgkin-Huxley model in the high-input regime, Phys. Rev. E, 73, 041902 (2006) · doi:10.1103/PhysRevE.73.041902
[48] Muratov, C. B.; Vanden-Eijnden, E.; E., W., Self-induced stochastic resonance in excitable systems, Physica D, 210, 227-240 (2005) · Zbl 1109.34040 · doi:10.1016/j.physd.2005.07.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.