×

An ordered line integral method for computing the quasi-potential in the case of variable anisotropic diffusion. (English) Zbl 1415.65017

Summary: Nongradient stochastic differential equations (SDEs) with position-dependent and anisotropic diffusion are often used in biological modeling. The quasi-potential is a crucial function in the large deviation theory that allows one to estimate transition rates between attractors of the corresponding ordinary differential equation and find the maximum likelihood transition paths. Unfortunately, the quasi-potential can rarely be found analytically. It is defined as the solution to a certain action minimization problem. In this work, the recently introduced ordered line integral method (OLIM) is extended for computing the quasi-potential for 2D SDEs with anisotropic and position-dependent diffusion scaled by a small parameter on a regular rectangular mesh. The presented solver employs the dynamical programming principle. At each step, a local action minimization problem is solved using straight line path segments and the midpoint quadrature rule. The solver is tested on two examples where analytic formulas for the quasi-potential are available. The dependence of the computational error on the mesh size, the update factor \(K\) (a key parameter of OLIMs), as well as the degree and the orientation of anisotropy is established. The effect of anisotropy on the quasi-potential and the maximum likelihood paths is demonstrated on the Maier-Stein model. The proposed solver is applied to find the quasi-potential and the maximum likelihood transition paths in a model of the genetic switch in lambda phage between the lysogenic state where the phage reproduces inside the infected cell without killing it, and the lytic state where the phage destroys the infected cell.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
92C40 Biochemistry, molecular biology

Software:

QPot

References:

[1] Freidlin, M. I.; Wentzell, A. D., Random Perturbations of Dynamical Systems (2012), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1267.60004
[2] Bouchet, F.; Reygner, J., Generalisation of the Eyring-Kramers Transition Rate Formula to Irreversible Diffusion Processes, Ann. Henri Poincar, 17, 3499-3532 (2016) · Zbl 1375.82081
[3] Cameron, M. K., Finding the Quasipotential for Nongradient SDEs, Physica D, 241, 1532-1550 (2012) · Zbl 1253.35229
[4] Maier, R. S.; Stein, D. L., Escape problem for irreversible systems, Phys. Rev. E, 48, 2, 931 (1993)
[5] Maier, R. S.; Stein, D. L., A Scaling Theory of Bifurcations in the Symmetric Weak-Noise Escape Problem, J. Stat. Phys., 8, 3/4, 291-357 (1996) · Zbl 1081.82583
[6] Chen, Z.; Freidlin, M., Smoluchowski-Kramers approximation and exit problems, Stoch. Dyn., 5, 4, 569-585 (2005) · Zbl 1083.60018
[7] Chen, Z., Asymptotic Problems Related To Smoluchowski-KramersApproximation (2006), UMD, (Ph.D. Dissertation)
[8] Dahiya, D.; Cameron, M., Ordered line integral methods for computing the quasi-potential, J. Sci. Comput., 75, 1351-1384 (2018) · Zbl 1395.65150
[9] http://www.math.umd.edu/ mariakc/software-and-datasets.html; http://www.math.umd.edu/ mariakc/software-and-datasets.html
[10] Ackers, G. K.; Johnson, A. D.; Shea, M. A., Quantitative model for gene regulation by \(\lambda\) phage repressor, Proc. Natl. Acad. Sci. USA, 79, 1129-1133 (1982)
[11] Shea, M. A.; Ackers, G. K., The OR control system of bacteriophage lambda: A physical-chemical model for gene regulation, J. Mol. Biol., 181, 211-230 (1985)
[12] Aurell, E.; Sneppen, K., Epigenetics as a first exit problem, Phys. Rev. Lett., 88, 1-4, Article 048101 pp. (2002)
[13] Aurell, E.; Brown, S.; Johanson, J.; Sneppen, K., Stability puzzles in phage \(\lambda \), Phys. Rev. E, 65, 051914-1-051914-9 (2002)
[14] Sethian, J. A.; Vladimirsky, A., Ordered upwind methods for static Hamilton-Jacobi equations, Proc. Natl. Acad. Sci. USA, 98, 20, 11069-11074 (2001) · Zbl 1002.65112
[15] Sethian, J. A.; Vladimirsky, A., Ordered upwind methods for static Hamilton-Jacobi-Bellman equations: theory and algorithms, SIAM J. Numer. Anal., 41, 1, 325-363 (2003) · Zbl 1040.65088
[16] Zhu, X. M.; Yin, L.; Hood, L.; Ao, P., Robustness, stability and efficiency of phage lambda genetic switch: dynamical structure analysis, J. Bioinform Comput. Biol., 2, 4, 785-817 (2004)
[17] Wang, J.; Zhang, K.; Wang, E. K., Kinetic paths, time scale, and underlying landscapes: A path integral framework to study global natures of nonequilibrium systems and networks, J. Chem. Phys., 133, 125103, 1-13 (2010)
[18] Heymann, M.; Vanden-Eijnden, E., The geometric minimum action method: a least action principle on the space of curves, Comm. Pure Appl. Math., 61, 8, 1052-1117 (2008) · Zbl 1146.60046
[19] Bellman, R., Dynamic Programming (1957), Princeton Press: Princeton Press New Jersey · Zbl 0077.13605
[20] Maier, R. S.; Stein, D. L., Limiting exit location distributions in the stochastic exit problem, SIAM J. Appl. Math., 57, 3, 752-790 (1997) · Zbl 0874.60072
[21] E, W.; Ren, W.; Vanden-Eijnden, E., Minimum action method for the study of rare events, Comm. Pure Appl. Math., 57, 0001-0020 (2004)
[22] Heymann, M.; Vanden-Eijnden, E., Pathways of maximum likelihood for rare events in non-equilibrium systems, application to nucleation in the presence of shear, Phys. Rev. Lett., 100, 14, Article 140601 pp. (2007)
[23] Zhou, X.; Ren, W.; Weiqing, W. E., Adaptive minimum action method for the study of rare events, J. Chem. Phys., 128, Article 104111 pp. (2008)
[24] Zhou, X.; Ren, W.; Weiqing, W. E., Study of noise-induced transitions in the Lorenz system using the minimum action method, Commun. Math. Sci., 8, 2, 341-355 (2010) · Zbl 1202.34104
[25] Chen, Z.; Zhu, J.; Liu, X., Crossing the quasi-threshold manifold of a noise-driven excitable system, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 473, 0058 (2017) · Zbl 1404.37105
[26] Nolting, B. C.; Abbot, K. C., Balls, cups, and quasi-potentials: quantifying stability in stochastic systems, Ecology, 97, 4, 850-864 (2016)
[27] Chacon, A.; Vladimirsky, A., Fast two-scale methods for Eikonal equations, SIAM J. Sci. Comput., 34, 2, A547-A578 (2012) · Zbl 1244.49047
[28] https://cran.r-project.org/web/packages/QPot/index.html; https://cran.r-project.org/web/packages/QPot/index.html
[29] Nolting, B.; Moore, C.; Stieha, C.; Cameron, M.; Abbott, K., QPot: an R package for stochastic differential equation quasi-potential analysis, R. J., 8, 2, 19-38 (2016)
[30] J. Wilkinson, Two Algorithms Based on Successive Linear Interpolation, Computer Science, Stanford University, Technical Report CS-60 1967.; J. Wilkinson, Two Algorithms Based on Successive Linear Interpolation, Computer Science, Stanford University, Technical Report CS-60 1967.
[31] Stewart, J. W., Afternotes on Numerical Analysis (1996), SIAM: SIAM Philadelphia · Zbl 0844.65002
[32] Ptashne, M., A Genetic Switch (2004), Cold Spring Harbor Laboratory Press: Cold Spring Harbor Laboratory Press New York
[33] Lei, X.; Tian, W.; Zhu, H.; Chen, T.; Ao, P., Biological sources of intrinsic and extrinsic noise in ci expression of lysogenic phage lambda, Sci. Rep., 5 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.