×

Fractional nonlinear dynamics of learning with memory. (English) Zbl 1459.34046

Nonlinear Dyn. 100, No. 2, 1231-1242 (2020); corrigendum ibid. 103, No. 2, 2163-2167 (2021).
Summary: In this paper, we consider generalization of the Lucas model of learning (learning-by-doing) that is described in the paper [R. E. Lucas jun., Econometrica 61, No. 2, 251–272 (1993; Zbl 0825.90148)], who was awarded the Nobel Prize in Economic Sciences in 1995. The model equation is nonlinear differential equation of the first order used in macroeconomics to explain effects of innovation and technical change. In the standard learning model, the memory effects and memory fading are not taken into account. We propose the learning models that take into account fading memory. Fractional differential equations of the suggested models contain fractional derivatives with the generalized Mittag-Leffler function (the Prabhakar function) in the kernel and their special case containing the Caputo fractional derivative. These nonlinear fractional differential equations, which describe the learning-by-doing with memory, and the expressions of its exact solutions are suggested. Based on the exact solution of the model equation, we show that the estimated productivity growth rate can be changed by memory effects.

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
39A70 Difference operators
47B39 Linear difference operators
65Q10 Numerical methods for difference equations

Citations:

Zbl 0825.90148

Software:

ML; longmemo
Full Text: DOI

References:

[1] Romer, D., Advanced Macroeconomics (2006), Boston: McGraw-Hill, Boston
[2] Lucas, RE Jr, Lectures on Economic Growth (2002), Cambridge and London: Harvard University Press, Cambridge and London
[3] Lucas, RE Jr, Making a miracle, Econometrica., 61, 2, 251-272 (1993) · Zbl 0825.90148 · doi:10.2307/2951551
[4] The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1995. NobelPrize.org. Nobel Media AB 2019. https://www.nobelprize.org/prizes/economic-sciences/1995/summary/
[5] The Royal Swedish Academy of Sciences (1995). The Scientific Contributions of Robert E. Lucas, Jr. https://www.nobelprize.org/prizes/economic-sciences/1995/advanced-information/
[6] Tarasova, VV; Tarasov, VE, Concept of dynamic memory in economics, Commun. Nonlinear Sci. Numer. Simul., 55, 127-145 (2018) · Zbl 1461.91210 · doi:10.1016/j.cnsns.2017.06.032
[7] Samko, SG; Kilbas, AA; Marichev, OI, Fractional Integrals and Derivatives Theory and Applications (1993), New York: Gordon and Breach, New York · Zbl 0818.26003
[8] Kiryakova, V., Generalized Fractional Calculus and Applications (1994), New York: Wiley, New York · Zbl 0882.26003
[9] Podlubny, I., Fractional Differential Equations (1998), San Diego: Academic Press, San Diego · Zbl 0922.45001
[10] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[11] Diethelm, K., The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, 247 (2010), Berlin: Springer, Berlin · Zbl 1215.34001
[12] Letnikov, A.V.: On the historical development of the theory of differentiation with arbitrary index. Math. Collect. 3(2), 85-112 (1868). http://mi.mathnet.ru/eng/msb/v3/i2/p85 [in Russian]
[13] Tenreiro Machado, J.; Kiryakova, V.; Mainardi, F., Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16, 3, 1140-1153 (2011) · Zbl 1221.26002 · doi:10.1016/j.cnsns.2010.05.027
[14] Tenreiro Machado, JA; Galhano, AM; Trujillo, JJ, Science metrics on fractional calculus development since 1966, Fract. Calc. Appl. Anal., 16, 2, 479-500 (2013) · Zbl 1312.26004 · doi:10.2478/s13540-013-0030-y
[15] Tenreiro Machado, JA; Galhano, AM; Trujillo, JJ, On development of fractional calculus during the last fifty years, Scientometrics., 98, 1, 577-582 (2014) · doi:10.1007/s11192-013-1032-6
[16] Valerio, D.; Machado, J.; Kiryakova, V., Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 17, 2, 552-578 (2014) · Zbl 1305.26008 · doi:10.2478/s13540-014-0185-1
[17] Tenreiro Machado, JA; Kiryakova, V., The chronicles of fractional calculus, Fract. Calc. Appl. Anal., 20, 2, 307-336 (2017) · Zbl 1364.26002 · doi:10.1515/fca-2017-0017
[18] Tarasov, VE, No violation of the Leibniz rule. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 18, 11, 2945-2948 (2013) · Zbl 1329.26015 · doi:10.1016/j.cnsns.2013.04.001
[19] Ortigueira, MD; Tenreiro Machado, JA, What is a fractional derivative?, J. Comput. Phys., 293, 4-13 (2015) · Zbl 1349.26016 · doi:10.1016/j.jcp.2014.07.019
[20] Tarasov, VE, On chain rule for fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 30, 1-3, 1-4 (2016) · Zbl 1489.26011 · doi:10.1016/j.cnsns.2015.06.007
[21] Tarasov, VE, Leibniz rule and fractional derivatives of power functions, J. Comput. Nonlinear Dyn., 11, 3, 031014 (2016) · doi:10.1115/1.4031364
[22] Tarasov, VE, No nonlocality. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 62, 157-163 (2018) · Zbl 1470.26014 · doi:10.1016/j.cnsns.2018.02.019
[23] Tarasov, VE, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, 505 (2010), New York: Springer, New York · Zbl 1214.81004
[24] Tenreiro Machado, JA, Handbook of Fractional Calculus with Applications (2019), Berlin, Boston: De Gruyter, Berlin, Boston
[25] Tarasov, VE, On history of mathematical economics: application of fractional calculus, Mathematics, 7, 6, 509 (2019) · doi:10.3390/math7060509
[26] Tarasov, VE, Rules for fractional-dynamic generalizations: difficulties of constructing fractional dynamic models, Mathematics, 7, 6, 554 (2019) · doi:10.3390/math7060554
[27] Tarasov, VE, Generalized memory: fractional calculus approach, Fractal Fract., 2, 4, 23 (2018) · doi:10.3390/fractalfract2040023
[28] Trujillo, JJ; Rivero, M.; Bonilla, D., On a Riemann-Liouville generalized Taylor’s formula, J. Math. Anal. Appl., 231, 255-265 (1999) · Zbl 0931.26004 · doi:10.1006/jmaa.1998.6224
[29] Gorenflo, R.; Kilbas, AA; Mainardi, F.; Rogosin, SV, Mittag-Leffler Functions, Related Topics and Applications, 443 (2014), Berlin: Springer, Berlin · Zbl 1309.33001
[30] Prabhakar, TR, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19, 7-15 (1971) · Zbl 0221.45003
[31] Gorenflo, R.; Kilbas, AA; Rogosin, SV, On the generalized Mittag-Leffler type functions, Integral Transf. Spec. Funct., 7, 3-4, 215-224 (1998) · Zbl 0935.33012 · doi:10.1080/10652469808819200
[32] Kilbas, AA; Saigo, M.; Saxena, RK, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transf. Spec. Funct., 15, 1, 31-49 (2004) · Zbl 1047.33011 · doi:10.1080/10652460310001600717
[33] Tarasov, VE; Tarasova, SS, Fractional derivatives and integrals: What are they needed for?, Mathematics, 8, 2, 164 (2020) · doi:10.3390/math8020164
[34] Kilbas, AA; Saigo, M.; Saxena, RK, Solution of Volterra integro-differential equations with generalized Mittag-Leffler function in the kernels, J. Integral Equ. Appl., 14, 4, 377-396 (2002) · Zbl 1041.45011 · doi:10.1216/jiea/1181074929
[35] Srivastava, HM; Tomovski, Z., Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211, 1, 198-210 (2009) · Zbl 1432.30022 · doi:10.1016/j.amc.2009.01.055
[36] Polito, F.; Tomovski, Z., Some properties of Prabhakar-type fractional calculus operators, Fract. Differ. Calc., 6, 1, 73-94 (2016) · Zbl 1424.26017 · doi:10.7153/fdc-06-05
[37] Garra, R.; Garrappa, R., The Prabhakar or three parameter Mittag-Leffler function: theory and application, Commun. Nonlinear Sci. Numer. Simul., 56, 314-329 (2018) · Zbl 1524.33083 · doi:10.1016/j.cnsns.2017.08.018
[38] Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F., A practical guide to Prabhakar fractional calculus, Fract. Calc. Appl. Anal., 23, 1, 9-54 (2020) · Zbl 1437.33019 · doi:10.1515/fca-2020-0002
[39] D’Ovidio, M., Polito, F.: Fractional diffusion-telegraph equations and their associated stochastic solutions. Cornell University, pp 23. (2013). arXiv:1307.1696
[40] D’Ovidio, M.; Polito, F., Fractional diffusion-telegraph equations and their associated stochastic solutions, Theory Probab. Appl., 62, 4, 692-718 (2017) · Zbl 1405.60086 · doi:10.4213/tvp5150
[41] D’Ovidio, M.; Polito, F., Fractional diffusion-telegraph equations and their associated stochastic solutions, Theory Probab. Appl., 62, 4, 552-574 (2018) · Zbl 1405.60086 · doi:10.1137/S0040585X97T988812
[42] Giusti, A., General fractional calculus and Prabhakar’s theory, Commun. Nonlinear Sci. Numer. Simul., 83, 105114 (2020) · Zbl 1451.26009 · doi:10.1016/j.cnsns.2019.105114
[43] Tarasov, VE, Caputo-Fabrizio operator in terms of integer derivatives: memory or distributed lag?, Comput. Appl. Math., 38, 113 (2019) · Zbl 1438.26016 · doi:10.1007/s40314-019-0883-8
[44] Tarasov, VE; Tarasova, SS, Fractional and integer derivatives with continuously distributed lag, Commun. Nonlinear Sci. Numer. Simul., 70, 125-169 (2019) · Zbl 1464.26008 · doi:10.1016/j.cnsns.2018.10.014
[45] Tarasov, VE; Tarasova, VV, Harrod-Domar growth model with memory and distributed lag, Axioms, 8, 1, 9 (2019) · Zbl 1432.91079 · doi:10.3390/axioms8010009
[46] Tarasov, VE; Tarasova, VV, Logistic equation with continuously distributed lag and application in economics, Nonlinear Dyn., 97, 2, 1313-1328 (2019) · Zbl 1430.37128 · doi:10.1007/s11071-019-05050-1
[47] Tarasov, VE; Tarasova, VV, Dynamic Keynesian model of economic growth with memory and lag, Mathematics, 7, 2, 178 (2019) · doi:10.3390/math7020178
[48] Tarasov, V.E., Tarasova, V.V.: Dynamic Keynesian model of economic growth with memory and lag. In: Mainardi, F., Giusti, A. (eds.) Advanced Mathematical Methods Theory and Applications, pp 116-132. MDPI, Basel, Beijing, Wuhan, Barcelona, Belgrade (2020). 10.3390/books978-3-03928-247-0. 198 pages. ISBN: 978-3-03928-247-0
[49] Granger, CWJ, The typical spectral shape of an economic variable, Econometrica., 34, 1, 150-161 (1966) · doi:10.2307/1909859
[50] Granger, C.W.J.: Essays in econometrics: collected papers of Clive W. J. Granger. In: by E. Ghysels, N.R. Swanson, M.W. Watson (eds.) Spectral Analysis, Seasonality, Nonlinearity, Methodology, and Forecasting, Vol. I, pp. 523. Cambridge University Press, Cambridge (2001) · Zbl 1051.01013
[51] Granger, CWJ; Joyeux, R., An introduction to long memory time series models and fractional differencing, J. Time Ser. Anal., 1, 15-39 (1980) · Zbl 0503.62079 · doi:10.1111/j.1467-9892.1980.tb00297.x
[52] Hosking, JRM, Fractional differencing, Biometrika, 68, 1, 165-176 (1981) · Zbl 0464.62088 · doi:10.1093/biomet/68.1.165
[53] The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2003. Press release. NobelPrize.org. Nobel Media AB 2019. https://www.nobelprize.org/prizes/economic-sciences/2003/summary/
[54] Beran, J., Statistics for Long-Memory Processes, 315 (1994), New York: Chapman and Hall, New York · Zbl 0869.60045
[55] Palma, W.: Long-Memory Time Series: Theory and Methods, p. 304. Wiley, Hoboken (2007). 10.1002/97804701314. ISBN: 978-0-470-11402-5 · Zbl 1183.62153
[56] Beran, J.; Feng, Y.; Ghosh, S.; Kulik, R., Long-Memory Processes: Probabilistic Properties and Statistical Methods, 884 (2013), Berlin, Heidelberg, New York: Springer, Berlin, Heidelberg, New York · Zbl 1282.62187
[57] Teyssiere, G., Kirman, A.P. (eds.): Long Memory in Economics, p. 390. Springer, Berlin, Heidelberg (2007). 10.1007/978-3-540-34625-8 · Zbl 1106.91001
[58] Tarasov, VE; Tarasova, VV, Criterion of existence of power-law memory for economic processes, Entropy, 20, 4, 414 (2018) · doi:10.3390/e20060414
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.