×

Generic well-posedness for an inverse source problem for a multi-term time-fractional diffusion equation. (English) Zbl 1461.35236

Summary: This paper deals with an inverse source problem for the multi-term time-fractional diffusion equation with a diffusion parameter by using final overdetermination. On the basis of analytic Fredholm theory, a generic well-posedness of the inverse source problem in some suitable function space is proved.

MSC:

35R30 Inverse problems for PDEs
35R25 Ill-posed problems for PDEs
35R11 Fractional partial differential equations
35K15 Initial value problems for second-order parabolic equations
47A55 Perturbation theory of linear operators

References:

[1] E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis, Water Resources Research 28 (1992), no. 12, 3293-3307.
[2] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics 65, Academic Press, New York, 1975. · Zbl 0314.46030
[3] E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, Dissertation, Technische Universiteit Eindhoven, Eindhoven, 2001. · Zbl 0989.34002
[4] S. Beckers and M. Yamamoto, Regularity and unique existence of solution to linear diffusion equation with multiple time-fractional derivatives, in: Control and Optimization with PDE Constraints, 45-55, Internat. Ser. Numer. Math. 164, Birkhäuser/Springer Basel AG, Basel, 2013. · Zbl 1273.35289
[5] J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep. 195 (1990), no. 4-5, 127-293.
[6] M. Choulli, Une introduction aux problèmes inverses elliptiques et paraboliques, Springer-Verlag, Berlin, 2009. · Zbl 1192.35187
[7] M. Choulli and M. Yamamoto, Generic well-posedness of an inverse parabolic problem-the Hölder-space approach, Inverse Problems 12 (1996), no. 3, 195-205. · Zbl 0851.35133
[8] V. Daftardar-Gejji and S. Bhalekar, Boundary value problems for multi-term fractional differential equations, J. Math. Anal. Appl. 345 (2008), no. 2, 754-765. · Zbl 1151.26004 · doi:10.1016/j.jmaa.2008.04.065
[9] K. Diethelm and Y. Luchko, Numerical solution of linear multi-term initial value problems of fractional order, J. Comput. Anal. Appl. 6 (2004), no. 3, 243-263. · Zbl 1083.65064
[10] R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, in: Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), 223-276, CISM Courses and Lect. 378, Springer, Vienna, 1997. · Zbl 1438.26010
[11] Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Research 34 (1998), no. 5, 1027-1033. · Zbl 1024.31004
[12] X. Huang, Z. Li and M. Yamamoto, Carleman estimates for the time-fractional advection-diffusion equations and applications, Inverse Problems 35 (2019), no. 4, 045003, 36 pp. · Zbl 1418.35050
[13] D. Jiang, Z. Li, Y. Liu and M. Yamamoto, Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations, Inverse Problems 33 (2017), no. 5, 055013, 22 pp. · Zbl 1372.35364
[14] H. Jiang, F. Liu, I. Turner and K. Burrage, Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain, J. Math. Anal. Appl. 389 (2012), no. 2, 1117-1127. · Zbl 1234.35300 · doi:10.1016/j.jmaa.2011.12.055
[15] B. Jin, R. Lazarov and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal. 51 (2013), no. 1, 445-466. · Zbl 1268.65126 · doi:10.1137/120873984
[16] T. Kato, Perturbation Theory for Linear Operators, Springer Science & Business Media, 2013.
[17] Z. Li, X. Huang and M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with \(x\)-dependent coefficients, Evol. Equ. Control Theory 9 (2020), no. 1, 153-179. · Zbl 1431.35231
[18] Z. Li, Y. Liu and M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients, Appl. Math. Comput. 257 (2015), 381-397. · Zbl 1338.35471 · doi:10.1016/j.amc.2014.11.073
[19] F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput. 191 (2007), no. 1, 12-20. · Zbl 1193.76093 · doi:10.1016/j.amc.2006.08.162
[20] Y. Liu, Strong maximum principle for multi-term time-fractional diffusion equations and its application to an inverse source problem, Comput. Math. Appl. 73 (2017), no. 1, 96-108. · Zbl 1368.35273 · doi:10.1016/j.camwa.2016.10.021
[21] Y. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order, Fract. Calc. Appl. Anal. 12 (2009), no. 4, 409-422. · Zbl 1198.26012
[22] —-, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation, Comput. Math. Appl. 59 (2010), no. 5, 1766-1772. · Zbl 1189.35360
[23] —-, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl. 374 (2011), no. 2, 538-548. · Zbl 1202.35339
[24] M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math. 172 (2004), no. 1, 65-77. · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[25] I. Podlubny, Fractional Differential Equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering 198, Academic Press, San Diego, 1999. · Zbl 0924.34008
[26] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011), no. 1, 426-447. · Zbl 1219.35367 · doi:10.1016/j.jmaa.2011.04.058
[27] —-, Inverse source problem with a final overdetermination for a fractional diffusion equation, Math. · Zbl 1241.35220 · doi:10.3934/mcrf.2011.1.509
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.