×

Very weak solutions to the rotating Stokes, Oseen and navier-stokes problems in weighted spaces. (English) Zbl 1457.76061

Summary: We consider the linearized and nonlinear problems arising from the motion of fluid flow around a rotating rigid body. We are interested in very weak solutions of these problems.

MSC:

76D07 Stokes and related (Oseen, etc.) flows
76D05 Navier-Stokes equations for incompressible viscous fluids
76U05 General theory of rotating fluids
35D30 Weak solutions to PDEs
Full Text: DOI

References:

[1] H.Abels, M.Krbec, and K.Schumacher, On the trace space of a Sobolev space with a radial weight(English summary) J. Funct. Spaces Appl.6‐3, 259-276 (2008). · Zbl 1169.46012
[2] H.Amann, On the strong solvability of the Navier‐Stokes equations, J. Math. Fluid Mech.2, 1-98 (2000). · Zbl 0989.35107
[3] H.Amann, Nonhomogeneous Navier-Stokes equations with integrable low‐regularity data, in Nonlinear Problems in Mathematical Physics and Related Topics, II (Kluwer/Plenum, New York, Int. Math. Ser., 2002), pp. 1-28. · Zbl 1201.76038
[4] C.Amrouche and M. A.Rodriguez‐Bellido, Stationary Stokes, Oseen and Navier-Stokes equations with singular data, Arch. Rational Mech. Anal.199, 597-651 (2011). · Zbl 1229.35164
[5] C.Amrouche and V.Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J.44(119), 109-140 (1994). · Zbl 0823.35140
[6] F.Alliot, Etude des équations stationnaires de Stokes et Navier-Stokes dans des domaines extérieures, PhD. thesis (1994).
[7] S. K.Chua, Extension theorems on weighted Sobolev spaces, Indiana Univ. Math. J.41(4), 1027-1075 (1992). · Zbl 0767.46025
[8] P.Deuring, S.Kračmar, and Š.Nečasová, Pointwise decay of stationary rotational viscous incompressible flows with nonzero velocity at infinity, J. Differential Equations255(7), 1576-1606 (2013). · Zbl 1284.35306
[9] R.Farwig, An \(L^q\)‐analysis of viscous fluid flow past a rotating obstacle, Tôhoku Math. J.58, 129-147 (2006). · Zbl 1136.76340
[10] R.Farwig, R. B.Guenther, Š.Nečasová, and E. A.Thomann, The fundamental solution of the linearized instationary Navier-Stokes equations of motion around a rotating and translating body, Discrete Contin. Dyn. Syst.34(2), 511-529 (2014). · Zbl 1280.35087
[11] R.Farwig, T.Hishida, and D.Müller, \(L^q\)‐Theory of a singular “winding” integral operator arising from fluid dynamics, Pacific J. Math.215, 297-312 (2004). · Zbl 1057.35028
[12] R.Farwig, M.Krbec, and Š.Nečasová, A weighted \(L^q\)‐approach to Oseen flow around a rotating body, Math. Methods Appl. Sci.31, 551-574 (2008). · Zbl 1132.76015
[13] R.Farwig, M.Krbec, and Š.Nečasová, A weighted \(L^q\)‐approach to Stokes flow around a rotating body, Ann. Univ. Ferrara ‐ Sez. VII.54, 61-84 (2008). · Zbl 1248.35158
[14] R.Farwig, G. P.Galdi, and H.Sohr, A new class of very weak solutions of the Navier-Stokes equations with nonhomogeneous data, J. Math. Fluid Mech.8, 423-444 (2006). · Zbl 1104.35032
[15] R.Farwig, H.Kozono, and H.Sohr, Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data, J. Math. Soc. Japan59, 127-150 (2007). · Zbl 1107.76022
[16] R.Farwig and H.Sohr, Existence, uniqueness and regularity of stationary solutions in inhomogeneous Navier-Stokes equations in \(\mathbb{R}^n\), Czech. Math. J.59(134), 61-79 (2009). · Zbl 1224.76034
[17] A.Fröhlich, The Stokes operator in weighted \(L^q\)‐spaces II: Weighted resolvent estimates and maximal \(L^p\)‐regularity, Math. Ann.339, 287-316 (2007). · Zbl 1126.35041
[18] A.Fröhlich, Solutions of the Navier-Stokes initial value problem in weighted \(L^q\)‐spaces, Math. Nachr.150‐166, 269-270 (2004). · Zbl 1050.35068
[19] G. P.Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Linearised Steady Problems, Springer Tracts in Natural Philosophy Vol. 38, 2nd edition (Springer, 1998).
[20] G. P.Galdi, An Introduction to the Mathematical Theory of the Navier‐Stokes Equations, Steady ‐ State Problems (Springer‐Verlag, New York-Berlin-Heidelberg, 2012).
[21] G. P.Galdi, On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, Handbook of Mathematical Fluid Dynamics, edited by S.Friedlander (ed.), and D.Serre (ed.) Vol. 1 (Elsevier, 2002). · Zbl 0992.76001
[22] G. P.Galdi and M.Kyed, A simple proof of \(L^q\)‐estimates for the steady‐state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions, Proc. Amer. Math. Soc.141, 573-583 (2013). · Zbl 1261.35106
[23] G. P.Galdi, C.Simader, and H.Sohr, A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in \(W^{- 1 / q , q}\), Math. Ann.331, 41-74 (2005). · Zbl 1064.35133
[24] Y.Giga, Analyticity of the semigroup generated by the Stokes operator in \(L_p\)‐spaces, Math. Z.178, 287-329 (1981). · Zbl 0473.35064
[25] J.Garcia‐Cuerva and J. L. RubiodeFrancia, Weighted Norm Inequalities and Related Topics (North‐Holland, Amsterdam, 1985). · Zbl 0578.46046
[26] D.Haroske and H. J.Schmeisser, On trace spaces of function spaces with a radial weight: the atomic approach, Complex Var. Elliptic Equ.55(8-10), 875-896 (2010). · Zbl 1210.46024
[27] P.Gurka and B.Opic, Continuous and compact imbeddings of weighted Sobolev spaces, II, Czechoslovak Math. J.39(1), 114, 78-94 (1989). · Zbl 0669.46019
[28] T.Hishida, \(L^q\) estimates of weak solutions to the stationary Stokes equations around a rotating body, J. Math. Soc. Japan58, 743-767 (2006). · Zbl 1184.35241
[29] P. W.Jones, Quasiconformal mappings and extendability of functions in Sobolev spcas, Acta Math.147, 71-88 (1981). · Zbl 0489.30017
[30] S.Kračmar, Š.Nečasová, and P.Penel, \(L^q\)‐approach of weak solutions of Oseen flow around a rotating body, Quart. Appl. Math. LXVIII3, 421-437 (2010). · Zbl 1258.76058
[31] S.Kračmar, Š.Nečasová, and P.Penel, Very weak solutions to the rotating Oseen and Navier‐Stokes problems in weighted spaces. (In preparation.) · Zbl 1457.76061
[32] S.Kračmar, M.Krbec, Š.Nečasová, P.Penel, and K.Schumacher, An \(L^q\) approach with generalized anisotropic weights of the weak solution of the Oseen flow around a rotating body in the whole space, Nonlinear Anal.2009, e2940-e2957. · Zbl 1239.76020
[33] S.Kračmar, Š.Nečasová, Š, and P.Penel, A certain weighted variant of the embedding inequalities, C. R. Math. Acad. Sci. Paris351(17-18), 663-668 (2013). · Zbl 1286.46038
[34] S.Kračmar, Š.Nečasová, J.Neustupa, and P.Penel, Mathematical theory of the fluid flow around a rotating and translating body, in preparation. · Zbl 1369.76059
[35] A.Kufner, Weighted Sobolev Spaces, Translated from the Czech (A Wiley‐Interscience Publication. John Wiley and Sons, Inc., New York, 1985). · Zbl 0567.46009
[36] M.Kyed, On a mapping property of the Oseen operator with rotation, Discrete Contin. Dyn. Syst. Ser. S6(5), 1315-1322 (2013). · Zbl 1260.35117
[37] D. S.Kurtz, Littlewood‐Paley and multiplier theorems on weighted \(L^p\) spaces, Trans. Amer. Math. Soc.259, 235-254 (1980). · Zbl 0436.42012
[38] J.Nečas, Direct Methods in the Theory of Elliptic Equations, Translated from the 1967 French original by Gerard Tronel and Alois Kufner, Editorial coordination and preface by Šárka Nečasová and a contribution by Christian G. Simader (Springer Monographs in Mathematics, Springer, Heidelberg, 2012).
[39] Š.Nečasová and K.Schumacher, Strong solution of the Stokes Flow Around a Rotating Body in weighted \(L^q\)‐spaces, Math. Nachr.284(13), 1701-1714 (2011). · Zbl 1291.76081
[40] A.Novotný and I.Straškraba, Introduction to the Mathematical Theory of Compressible Flow (Oxford University Press, Oxford, 2004). · Zbl 1088.35051
[41] K.Schumacher, Solutions to the equation \(\text{div} u = f\) in weighted Sobolev spaces, Banach Center Publ.81, 433-440 (2008). · Zbl 1207.35095
[42] K.Schumacher, Very weak solutions to the Stokes and Stokes resolvent problem in weighted function spaces, Ann. Univ. Ferrara Sez. VII Sci. Mat.54(1), 123-144 (2008). · Zbl 1179.35225
[43] K.Schumacher, Stationary Stokes and Navier-Stokes equations in weighted Bessel‐potential spaces, J. Math. Soc. Japan61(1), 1-38 (2009). · Zbl 1169.35046
[44] E. M.Stein, Harmonic Analysis: Real‐Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton University Press, Princeton, N.J., 1993). · Zbl 0821.42001
[45] E.Sawyer and R. L.Wheeden, Weighted inequalities for fractional integrals on euclidean and homogeneous spaces, Amer. J. Math.114, 813-874 (1992). · Zbl 0783.42011
[46] B. O.Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Mathematics Vol. 1736 (Springer‐Verlag, Berlin, 2000). · Zbl 0949.31006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.