×

The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body. (English) Zbl 1280.35087

The authors develop a complete mathematical study and show the fundamental solution of the linearized Navier-Stokes problem of the motion of a viscous fluid around a rotating body when the axis of rotation of the body is not parallel to the velocity of the fluid at infinity. A number of lemmas are developed and theorems are proved for the uniqueness and stability of the problem. No numerical experiments are performed for illustration.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76D07 Stokes and related (Oseen, etc.) flows

References:

[1] P. Deuring, <em>A representation formula for linearized stationary incompressible viscous flows around rotating and translating bodies</em>,, Discrete Contin. Dyn. Syst. Ser. S, 3, 237 (2010) · Zbl 1193.35127 · doi:10.3934/dcdss.2010.3.237
[2] P. Deuring, <em>On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies</em>,, SIAM J. Math. Anal., 43, 705 (2011) · Zbl 1231.35143 · doi:10.1137/100786198
[3] P. Deuring, <em>Linearized stationary incompressible flow around rotating and translating bodies: Asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity</em>,, J. Differential Equations, 252, 459 (2012) · Zbl 1238.35097 · doi:10.1016/j.jde.2011.08.037
[4] P. Deuring, <em>A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: Improved decay estimates of the velocity and its gradient</em>,, Dynamical Systems, 351 (2011) · Zbl 1306.35083
[5] R. Farwig, <em>The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,</em>, Math. Z., 211, 409 (1992) · Zbl 0727.35106 · doi:10.1007/BF02571437
[6] R. Farwig, <em>An \(L^q\)-analysis of viscous fluid flow past a rotating obstacle</em>,, Tôhoku Math. J., 58, 129 (2006) · Zbl 1136.76340 · doi:10.2748/tmj/1145390210
[7] R. Farwig, <em>Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle</em>,, in, 70, 73 (2005) · Zbl 1101.35348 · doi:10.4064/bc70-0-5
[8] R. Farwig, <em>Asymptotic structure of a Leray solution to the Navier-Stokes flow around a rotating body</em>,, Pacific J. Math., 253, 367 (2011) · Zbl 1234.35035 · doi:10.2140/pjm.2011.253.367
[9] R. Farwig, <em>Stationary Navier-Stokes flow around a rotating obstacles</em>,, Funkcial. Ekvac., 50, 371 (2007) · Zbl 1180.35408 · doi:10.1619/fesi.50.371
[10] R. Farwig, <em>Asymptotic profile of steady Stokes flow around a rotating obstacle,</em>, Manuscripta Math., 136, 315 (2011) · Zbl 1229.35172 · doi:10.1007/s00229-011-0479-0
[11] R. Farwig, <em>Asymptotic profiles of steady Stokes and Navier-Stokes flows around a rotating obstacle,</em>, Ann. Univ. Ferrara Sez. VII Sci. Mat., 55, 263 (2009) · Zbl 1205.35191 · doi:10.1007/s11565-009-0072-6
[12] R. Farwig, <em>Leading term at infinity of steady Navier-Stokes flow around a rotating obstacle</em>,, Math. Nachr., 284, 2065 (2011) · Zbl 1229.35173 · doi:10.1002/mana.200910192
[13] R. Farwig, <em>\(L^q\)-Theory of a singular “winding” integral operator arising from fluid dynamics,</em>, Pacific J. Math., 215, 297 (2004) · Zbl 1057.35028 · doi:10.2140/pjm.2004.215.297
[14] R. Farwig, <em>A weighted \(L^q\)-approach to Oseen flow around a rotating body</em>,, Math. Methods Appl. Sci., 31, 551 (2008) · Zbl 1132.76015 · doi:10.1002/mma.925
[15] R. Farwig, <em>A weighted \(L^q\)-approach to Stokes flow around a rotating body</em>,, Ann. Univ. Ferrara, 54, 61 (2008) · Zbl 1248.35158 · doi:10.1007/s11565-008-0040-6
[16] R. Farwig, <em>On the spectrum of a Stokes-type operator arising from flow around a rotating body,</em>, Manuscripta Math., 122, 419 (2007) · Zbl 1126.35050 · doi:10.1007/s00229-007-0078-2
[17] R. Farwig, <em>Spectral analysis of a Stokes-type operator arising from flow around a rotating body,</em>, J. Math. Soc. Japan, 63, 163 (2011) · Zbl 1223.35257 · doi:10.2969/jmsj/06310163
[18] R. Finn, <em>On the exterior stationary problem for the Navier-Stokes equations, and associated problems,</em>, Arch. Ration. Mech. Anal., 19, 363 (1965) · Zbl 0149.44606
[19] A. Friedman, “Partial Differential Equations of Parabolic Type,”, Prentice-Hall Inc. (1964) · Zbl 0144.34903
[20] G. P. Galdi, “An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems,”, Springer Tracts in Natural Philosophy, 38 (1994) · Zbl 0949.35004 · doi:10.1007/978-1-4612-5364-8
[21] G. P. Galdi, <em>On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,</em>, in, 653 (2002) · Zbl 1230.76016
[22] G. P. Galdi, <em>Steady flow of a Navier-Stokes fluid around a rotating obstacle,</em>, J. Elasticity, 71, 1 (2003) · Zbl 1156.76367 · doi:10.1023/B:ELAS.0000005543.00407.5e
[23] G. P. Galdi, <em>Asymptotic behavior of a Leray solution around a rotating obstacle</em>,, in, 80, 251 (2011) · Zbl 1247.35168 · doi:10.1007/978-3-0348-0075-4_13
[24] G. P. Galdi, <em>Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable</em>,, Arch. Ration. Mech. Anal., 200, 21 (2011) · Zbl 1229.35176 · doi:10.1007/s00205-010-0350-6
[25] G. P. Galdi, <em>On the steady motion of a Navier-Stokes liquid around a rigid body,</em>, Arch. Rational Mech. Anal., 184, 371 (2006) · Zbl 1111.76010 · doi:10.1007/s00205-006-0026-4
[26] G. P. Galdi, <em>Further results on steady-state flow of a Navier-Stokes liquid around a rigid body. Existence of the wake,</em>, in, 127 (2007) · Zbl 1119.76011
[27] M. Geissert, <em>\(L^p\) theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle</em>,, J. Reine Angew. Math., 596, 45 (2006) · Zbl 1102.76015 · doi:10.1515/CRELLE.2006.051
[28] T. Hansel, <em>On the Navier-Stokes equations with rotating effect and prescribed outflow velocity</em>,, J. Math. Fluid Mech., 13, 405 (2011) · Zbl 1270.35345 · doi:10.1007/s00021-010-0026-x
[29] T. Hishida, <em>The Stokes operator with rotating effect in exterior domains</em>,, Analysis (Munich), 19, 51 (1999) · Zbl 0938.35114
[30] T. Hishida, <em>\(L^q\) estimates of weak solutions to the stationary Stokes equations around a rotating body</em>,, J. Math. Soc. Japan, 58, 743 (2006) · Zbl 1184.35241 · doi:10.2969/jmsj/1156342036
[31] T. Hishida, <em>An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle</em>,, Arch. Ration. Mech. Anal., 150, 307 (1999) · Zbl 0949.35106 · doi:10.1007/s002050050190
[32] T. Hishida, <em>\(L_p-L_q\) estimate of Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle</em>,, Arch. Ration. Mech. Anal., 193, 339 (2009) · Zbl 1169.76015 · doi:10.1007/s00205-008-0130-8
[33] S. Kračmar, <em>Anisotropic \(L^2\) estimates of weak solutions to the stationary Oseen type equations in \(\mathbbR^3\) for a rotating body,</em>, RIMS Kokyuroku Bessatsu, B1, 219 (2007) · Zbl 1153.35060
[34] O. A. Ladyzhenskaya, “The Mathematical Theory of Viscous Incompressible Flow,”, Second English edition (1969) · Zbl 0184.52603
[35] W. Magnus, “Formulas and Theorems for the Special Functions of Mathematical Physics,”, Third enlarged edition (1966) · Zbl 0143.08502
[36] G. Da Prato, <em>On the Ornstein-Uhlenbeck operator in spaces of continuous functions</em>,, J. Funct. Anal., 131, 94 (1995) · Zbl 0846.47004 · doi:10.1006/jfan.1995.1084
[37] V. A. Solonnikov, <em>Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations,</em>, (English) Amer. Math. Soc. Transl. Ser. 2, 75, 1 (1968) · Zbl 0187.03402
[38] V. A. Solonnikov, <em>On estimates of solutions of the non-stationary Stokes problem in anisotropic Sobolev spaces and on estimates for the resolvent of the Stokes operator</em>,, (English) Russian Math. Surveys, 58, 331 (2003) · Zbl 1059.35101 · doi:10.1070/RM2003v058n02ABEH000613
[39] E. A. Thomann, <em>The fundamental solution of the linearized Navier-Stokes equations for spinning bodies in three spatial dimensions-time dependent case</em>,, J. Math. Fluid Mech., 8, 77 (2006) · Zbl 1125.35076 · doi:10.1007/s00021-004-0139-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.