×

Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity. (English) Zbl 1457.74026

Summary: The basic equations for a homogeneous and isotropic thermo-magnetoviscoelastic medium are formulated based on three different theories, i.e., the Green-Lindsay (G-L) theory, the coupled (CD) theory, and the Lord-Shulman (L-S) theory. The variable thermal conductivity is considered as a linear function of the temperature. Using suitable non-dimensional variables, these basic equations are solved via the eigenvalue approach. The medium is initially assumed to be stress-free and subject to a thermal shock. The numerical results reveal that the viscosity, the two-temperature parameter, the gravity term, and the magnetic field significantly influence the distribution of the physical quantities of the thermoelastic medium.

MSC:

74B10 Linear elasticity with initial stresses
Full Text: DOI

References:

[1] Gross, B., Mathematical Structure of the Theories of Viscoelasticity (1953), Paris: Hemann, Paris · Zbl 0052.20901
[2] Staverman, A. J.; Schwarzl, F., Linear Deformation Behaviour of High Polymers, Die Physik der Hochpolymeren (1956), Berlin: Springer, Berlin · Zbl 0048.19704
[3] Atkinson, C.; Craster, R., Theoretical aspects of fracture mechanics, Progress in Aerospace Sciences, 31, 1-83 (1995) · doi:10.1016/0376-0421(93)E0001-M
[4] Koltunov, M., Creeping and Relaxation (1976), Moscow: Vysshaya Shkola, Moscow
[5] Bland, D. R., The Theory of Linear Viscoelasticity (1960), New York: Pergamon Press, New York · Zbl 0108.38501
[6] Acharya, D. P.; Roy, I.; Biswas, P. K., Vibration of an infinite inhomogeneous transversely isotropic viscoelastic medium with cylindrical hole, Applied Mathematics and Mechanics (English Edition), 29, 3, 367-378 (2008) · Zbl 1231.74067 · doi:10.1007/s10483-008-0308-z
[7] Singh, P.; Chattopadhyay, A.; Singh, A. K., Rayleigh-type wave propagation in incompressible visco-elastic media under initial stress, Applied Mathematics and Mechanics (English Edition), 39, 3, 317-334 (2018) · Zbl 1383.74047 · doi:10.1007/s10483-018-2306-9
[8] Kumar, R.; Chawla, V.; Abbas, I. A., Effect of viscosity on wave propagation in anisotropic thermoelastic medium with three-phase-lag model, Theoretical and Applied Mechanics, 39, 313-341 (2012) · Zbl 1299.74125 · doi:10.2298/TAM1204313K
[9] Ellahi, R., The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions, Applied Mathematical Modelling, 37, 1451-1467 (2013) · Zbl 1351.76306 · doi:10.1016/j.apm.2012.04.004
[10] Deswal, S.; Punia, B. S.; Kalkal, K. K., Thermodynamical interactions in a twotemperature dual-phase-lag micropolar thermoelasticity with gravity, Multidiscipline Modeling in Materials and Structures, 14, 102-124 (2018) · doi:10.1108/MMMS-04-2017-0017
[11] Sheoran, S. S.; Kalkal, K. K.; Deswal, S., Fractional order thermo-viscoelastic problem with temperature dependent modulus of elasticity, Mechanics of Advance Material and Structures, 23, 407-414 (2016) · doi:10.1080/15376494.2014.981621
[12] Abo-Dahab, S. M.; Jahangir, A.; Muhammad, N.; Farwa, S.; Bashir, Y.; Usman, M., Propagation phenomena in a visco-thermo-micropolar elastic medium under the effect of micro-temperature, Results in Physics, 8, 793-798 (2018) · doi:10.1016/j.rinp.2017.12.064
[13] Hendy, M. H.; Amin, M. M.; Ezzat, M. A., Two-dimensional problem for thermoviscoelastic materials with fractional order heat transfer, Journal of Thermal Stresses, 42, 1-18 (2019) · doi:10.1080/01495739.2019.1623734
[14] Youssef, H., Dependence of modulus of elasticity and thermal conductivity on reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity, Applied Mathematics and Mechanics (English Edition), 264, 470-475 (2005) · Zbl 1144.74320 · doi:10.1007/BF02465386
[15] Youssef, H.; El-Bary, A. A., Two-temperature generalized thermoelasticity with variable thermal conductivity, Journal of Thermal Stresses, 33, 187-201 (2010) · doi:10.1080/01495730903454793
[16] Zenkour, A. M.; Mashat, D. S.; Aboulregal, A. E., The effect of dual-phase-lag model on reflection of thermoelastic waves in a solid half space with variable material properties, Acta Mechenica Solida Sinica, 26, 659-670 (2013) · doi:10.1016/S0894-9166(14)60009-4
[17] Wang, Y.; Liu, D.; Wang, Q.; Zhou, J., Asymptotic solutions for generalized thermoelasticity with variable thermal material properties, Archives of Mechanics, 68, 181-202 (2016) · Zbl 1464.74050
[18] Xiong, C.; Yu, L.; Niu, Y., Effect of variable thermal conductivity on the generalized thermoelasticity problems in a fiber-reinforced anisotropic half-space, Advances in Materials Science and Engineering, 2019, 8625371 (2019)
[19] Ellahi, R.; Zeeshan, A.; Shehzad, N.; Alamri, S. Z., Structural impact of Kerosene- Al2O3 nanoliquid on MHD Poiseuille flow with variable thermal conductivity: application of cooling process, Journal of Molecular Liquids, 264, 607-615 (2018) · doi:10.1016/j.molliq.2018.05.103
[20] Akbar, N. S.; Raza, M.; Ellahi, R., Peristaltic flow with thermal conductivity of H_2O + Cu nanofluid and entropy generation, Results in Physics, 5, 115-124 (2015) · doi:10.1016/j.rinp.2015.04.003
[21] Ellahi, R.; Zeeshan, A.; Hussain, F.; Abbas, T., Two-phase Couette flow of couple stress fluid with temperature dependent viscosity thermally affected by magnetized moving surface, Symmetry, 11, 647 (2019) · Zbl 1425.76278 · doi:10.3390/sym11050647
[22] Ailawalia, P. P.; Narah, N. S., Effect of rotation in generalized thermoelastic solid under the influence of gravity with an overlying infinite thermoelastic fluid, Applied Mathematics and Mechanics (English Edition), 3012, 1505-1518 (2009) · Zbl 1353.74023 · doi:10.1007/s10483-009-1203-6
[23] Abo-Dahab, S. M.; Abd-Alla, A. M.; Kilany, A. A., Effects of rotation and gravity on an electro-magneto-thermoelastic medium with diffusion and voids by using the Lord-Shulman and dual-phase-lag models, Applied Mathematics and Mechanics (English Edition), 408, 1135-1154 (2019) · Zbl 1422.74036 · doi:10.1007/s10483-019-2504-6
[24] Sur, A.; Pal, P.; Kanoria, M., Modeling of memory-dependent derivative in a fiberreinforced plate under gravitational effect, Journal of Thermal Stresses, 41, 973-992 (2018) · doi:10.1080/01495739.2018.1447316
[25] Sethi, M.; Gupta, K. C.; Gupta, D.; Manish, G., Surface waves in fibre-reinforced anisotropic solid elastic media under the influence of gravity, International Journal of Applied Mechanics and Engineering, 18, 177-188 (2013) · doi:10.2478/ijame-2013-0012
[26] Shaw, S.; Mukhopadhyay, B., Moving heat source response in micropolar half-space with two-temperature theory, Continuum Mechanics and Thermodynamics, 25, 523-535 (2013) · Zbl 1343.74014 · doi:10.1007/s00161-012-0284-3
[27] Said, S. M., Influence of gravity on generalized magneto-thermoelastic medium for three-phase-lag model, Journal of Computational and Applied Mathematics, 291, 142-157 (2016) · Zbl 1329.74087 · doi:10.1016/j.cam.2014.12.016
[28] Youssef, H. M., State-space approach on generalized thermoelasticity for an infinite material with a spherical cavity and variable thermal conductivity subjected to ramp type heating, Canadian Applied Mathematics Quarterly, 13, 369-390 (2015) · Zbl 1125.74014
[29] HETNARSKI, R. B. Thermal Stresses I, 2nd series, Vol. 1, Taylor & Francis Group, LLC, North-Holland (1986) · Zbl 0646.73002
[30] Das, N. C.; Bhakata, P. C., Eigenfunction expansion method to the solution of simultaneous equations and its application in mechanics, Mechanics Research Communications, 12, 19-29 (1985) · Zbl 0558.73054 · doi:10.1016/0093-6413(85)90030-8
[31] Ghosh, M. K.; Kanoria, M., Generalized thermoelastic functionally graded spherically isotropic solid containing a spherical cavity under thermal shock, Applied Mathematics and Mechanics (English Edition), 2910, 1263-1278 (2008) · Zbl 1396.74044 · doi:10.1007/s10483-008-1002-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.