×

Generalized thermoelastic functionally graded spherically isotropic solid containing a spherical cavity under thermal shock. (English) Zbl 1396.74044

Summary: This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). The surface of cavity is stress-free and is subjected to a time-dependent thermal shock. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical inversion of the transforms is carried out using the Bellman method. Displacement, stress and temperature are computed and presented graphically. It is found that variation in the thermo-physical properties of a material strongly influences the response to loading. A comparative study with a corresponding homogeneous material is also made.

MSC:

74F05 Thermal effects in solid mechanics
Full Text: DOI

References:

[1] Biot M A. Thermoelasticity and irreversible thermodynamics[J]. J Appl Phys, 1956, 27(3):240–253. · Zbl 0071.41204 · doi:10.1063/1.1722351
[2] Chadwick P. Progress in solid mechanics[M]. Vol I. Hill R, Sneddon I N (eds). Amsterdam: North Holland, 1960.
[3] Lord H, Shulman Y. A generalized dynamical theory of thermoelasticity[J]. Mech Phys Solid, 1967, 15(5):299–309. · Zbl 0156.22702 · doi:10.1016/0022-5096(67)90024-5
[4] Green A E, Lindsay K A. Thermoelasticity[J]. J Elast, 1972, 2(1):1–7. · Zbl 0775.73063 · doi:10.1007/BF00045689
[5] Tzou D Y. Experimental support for the lagging behavior in heat propagation[J]. J Thermophys Heat Transf, 1995, 9(4):686–693. · doi:10.2514/3.725
[6] Mitra K, Kumar S, Vedaverg A. Experimental evidence of hyperbolic heat conduction in processed meat[J]. J Heat Transfer (ASME), 1995, 117(3):568–573. · doi:10.1115/1.2822615
[7] Chandrasekharaiah D S. Thermoelasticity with second sound[J]. A Review Appl Mech Rev, 1986, 39(3):355–375. · Zbl 0588.73006 · doi:10.1115/1.3143705
[8] Bahar L, Hetnarski R. State space approach to thermoelasticity[J]. J Thermal Stresses, 1978, 1(1):135–145. · doi:10.1080/01495737808926936
[9] Ezzat M. Fundamental solution in thermoelasticity with two relaxation times for cylindrical regions[J]. Int J Eng Sci, 1995, 33(14):2011–2020. · Zbl 0899.73071 · doi:10.1016/0020-7225(95)00050-8
[10] Hetnarski R B, Ignaczak J. Generalized thermoelasticity response of semi-space to a short laser pulse[J]. J Thermal Stresses, 1994, 17(3):377–396. · doi:10.1080/01495739408946267
[11] Bagri A, Eslami M R. Generalized coupled thermoelasticity of disks based on the Lord-Shulman model[J]. J Thermal Stresses, 2004, 27(8):691–704. · doi:10.1080/01495730490440127
[12] Kar A, Kanoria M. Thermo-elastic interaction with energy dissipation in an unbounded body with a spherical hole[J]. International Journal of Solids and Structures, 2007, 44(9):2961–2971. · Zbl 1121.74020 · doi:10.1016/j.ijsolstr.2006.08.030
[13] Das N C, Lahiri A. Thermoelastic interactions due to prescribed pressure inside a spherical cavity in an unbounded medium[J]. Ind J Pure Appl Math, 2000, 31(1):19–32. · Zbl 0945.74019
[14] Kanoria M, Kar A. Thermoelastic interaction with energy dissipation in a transversely isotropic thin circular disc[C]. Proceedings of the Seventh International Congress on Thermal Stresses, 2007, 557–560. · Zbl 1122.74035
[15] Ghosh M K, Kanoria M. Generalized thermoelastic problem of a spherically isotropic infinite elastic medium containing a spherical cavity[J]. J Thermal Stresses, 2008, 31(8):665–679. · doi:10.1080/01495730802193872
[16] Aboudi J, Pindera M J, Arnold S M. Thermo-inelastic response of functionally graded composites[J]. International Journal of Solids and Structures, 1995, 32(12):1675–1710. · Zbl 0874.73040 · doi:10.1016/0020-7683(94)00201-7
[17] Wetherhold R C, Wang S S. The use of functionally graded materials to eliminate or control thermal deformation[J]. Composites Science and Technology, 1996, 28:1099–1104. · doi:10.1016/0266-3538(96)00075-9
[18] Sugano Y. An expression for transient thermal stress in a nonhomogeneous plate with temperature variation through thickness[J]. Ingenieur Archiv, 1987, 57(2):147–156. · Zbl 0604.73009 · doi:10.1007/BF00541388
[19] Qian L F, Batra R C. Transient thermoelastic deformations of a thick functionally graded plate[J]. J Thermal Stresses, 2004, 27(8):705–740. · doi:10.1080/01495730490440145
[20] Lutz M P, Zimmerman R W. Thermal stresses and effective thermal expansion coefficient of a functionally graded sphere[J]. J Thermal Stresses, 1996, 19(1):39–54. · doi:10.1080/01495739608946159
[21] Ye G R, Chen W Q, Cai J B. A uniformly heated functionally graded cylindrical shell with transverse isotropy[J]. Mechanics Research Communication, 2001, 28(5):535–542. · Zbl 1008.74519 · doi:10.1016/S0093-6413(01)00206-3
[22] Chen W Q, Wang X, Ding H J. Free vibration of a fluid-filled hollow sphere of a functionally graded material with spherical isotropy[J]. Journal of the Acoustical Society of America, 1999, 106(5):2588–2594. · doi:10.1121/1.428090
[23] Ding H J, Wang H M, Chen W Q. Analytical thermo-elastodynamic solutions for a nonhomogeneous transversely isotropic hollow sphere[J]. Archive of Applied Mechanics, 2002, 72(8):545–553. · Zbl 1036.74023 · doi:10.1007/s00419-002-0225-x
[24] Chen W Q, Ding H J, Wang X. The exact elasto-electric field of a rotating piezoceramic spherical shell with a functionally graded property[J]. International Journal of Solids and Structures, 2001, 38(38/39):7015–7027. · Zbl 1013.74024 · doi:10.1016/S0020-7683(00)00394-2
[25] Wang B L, Mai Y W. Transient one dimensional heat conduction problems solved by finite element[J]. International Journal of Mechanical Sciences, 2005, 47(2):303–317. · Zbl 1192.74094 · doi:10.1016/j.ijmecsci.2004.11.001
[26] Shao Z S, Wang T J, Ang K K. Transient thermo-mechanical analysis of functionally graded hollow circular cylinders[J]. J Thermal Stresses, 2007, 30(1):81–104. · doi:10.1080/01495730600897211
[27] Mallik S H, Kanoria M. Generalized thermo-elastic functionally graded solid with a periodically varying heat source[J]. International Journal of Solids and Structures, 2007, 44(22/23):7633–7645. · Zbl 1166.74337 · doi:10.1016/j.ijsolstr.2007.05.001
[28] Bagri A, Eslami M R. A unified generalized thermoelasticity formulation; application to thick functionally graded cylinders[J]. J Thermal Stresses, 2007, 30(9/10):911–930. · doi:10.1080/01495730701496079
[29] Chen W Q. Stress distribution in a rotating elastic functionally graded material hollow sphere with spherical isotropy[J]. Journal of Strain Analysis for Engineering Design, 2000, 35(1):13–20. · doi:10.1243/0309324001513973
[30] Obata Y, Noda N. Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally graded material[J]. J Thermal Stresses, 1994, 17(5):471–487. · doi:10.1080/01495739408946273
[31] Ootao Y, Tanigawa Y. Transient thermoelastic problem of a functionally graded cylindrical panel due to nonuniform heat supply[J]. J Thermal Stresses, 2007, 30(5):441–457. · doi:10.1080/01495730601146394
[32] Das N C, Lahiri A, Sen P K. Eigenvalue approach to three dimensional generalized thermoelasticity[J]. Bulletin Calcutta Math Soc, 2006, 98(4):305–318. · Zbl 1159.35434
[33] Nowacki W. Dynamic problems of thermoelasticity[M]. Warszawa: Polish Scientific Publishers, 1975. · Zbl 0364.73001
[34] Wang H M, Ding H J, Chen Y M. Thermoelastic dynamic solution of a multilayered spherically isotropic hollow sphere for spherically symmetric problems[J]. Acta Mechanica, 2005, 173(1/4):131–145. · Zbl 1066.74029 · doi:10.1007/s00707-004-0170-6
[35] Bellman R, Kolaba R E, Lockette J A. Numerical inversion of the Laplace transform[M]. New York: American Elsevier Pub Co, 1966.
[36] Dhaliwal R S, Sing A. Dynamic coupled thermoelasticity[M]. Delhi: Hindustan Publ, 1980.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.