×

Properties of bounded stochastic processes employed in biophysics. (English) Zbl 1457.60107

Summary: Realistic stochastic modeling is increasingly requiring the use of bounded noises. In this work, properties and relationships of commonly employed bounded stochastic processes are investigated within a solid mathematical ground. Four families are object of investigation: the Sine-Wiener (SW), the Doering-Cai-Lin (DCL), the Tsallis-Stariolo-Borland (TSB), and the Kessler-Sørensen (KS) families. We address mathematical questions on existence and uniqueness of the processes defined through Stochastic Differential Equations, which often conceal non-obvious behavior, and we explore the behavior of the solutions near the boundaries of the state space. The expression of the time-dependent probability density of the Sine-Wiener noise is provided in closed form, and a close connection with the Doering-Cai-Lin noise is shown. Further relationships among the different families are explored, pathwise and in distribution. Finally, we illustrate an analogy between the Kessler-Sørensen family and Bessel processes, which allows to relate the respective local times at the boundaries.

MSC:

60H30 Applications of stochastic analysis (to PDEs, etc.)
92C05 Biophysics

References:

[1] d’Onofrio, A.; Hosking, R. J.; Venturino, E., Aspects of Mathematical Modelling, ‘Noisy oncology’: Some caveats in using Gaussian noise in mathematical models of chemotherapy, 229-234 (2008), Birkhäuser · Zbl 1220.92037
[2] d’Onofrio, A.; Gandolfi, A.; Gattoni, S., The Norton-Simon hypothesis and the onset of non-genetic resistance to chemotherapy induced by stochastic fluctuations, Physica A Stat. Mech. Appl, 391, 24, 6484-6496 (2012) · doi:10.1016/j.physa.2012.07.025
[3] d’Onofrio, Alberto, Bounded Noises in Physics, Biology, and Engineering (2013), Birkhäuser · Zbl 1276.60002
[4] Wio, H. S.; Toral, R., Effect of non-Gaussian noise sources in a noise-induced transition, Physica D, 193, 1-4, 161-168 (2004) · Zbl 1062.82048 · doi:10.1016/j.physd.2004.01.017
[5] Long, F.; Guo, W.; Mei, D.-C., Stochastic resonance induced by bounded noise and periodic signal in an asymmetric bistable system, Physica A Stat. Mech. Appl, 391, 22, 5305-5310 (2012) · doi:10.1016/j.physa.2012.06.018
[6] Baura, A.; Kumar Sen, M.; Goswami, G.; Bag, B. C., Colored non-Gaussian noise driven open systems: Generalization of Kramers’ theory with a unified approach, J. Chem. Phys, 134, 4, 044126 (2011) · doi:10.1063/1.3521394
[7] Botts, R. T.; Homburg, A. J.; Young, T. R., The hopf bifurcation with bounded noise, Discrete Contin. Dyn. Syst. Ser. A, 32, 8, 2997 (2012) · Zbl 1291.37094 · doi:10.3934/dcds.2012.32.2997
[8] Bobryk, R. V.; Chrzeszczyk, A., Stability regions for mathieu equation with imperfect periodicity, Phys. Lett. A, 373, 39, 3532-3535 (2009) · Zbl 1233.70007 · doi:10.1016/j.physleta.2009.07.069
[9] Deng, J.; Xie, W.-C.; Pandey, M. D., Stochastic stability of a fractional viscoelastic column under bounded noise excitation, J. Sound Vibr, 333, 6, 1629-1643 (2014) · doi:10.1016/j.jsv.2013.11.019
[10] Zhu, J.; Wang, X. Q.; Xie, W.-C.; So, R. M., Flow-induced instability under bounded noise excitation in cross-flow, J. Sound Vibr., 312, 3, 476-495 (2008) · doi:10.1016/j.jsv.2007.08.041
[11] Sun, Z.; Xu, W.; Yang, X., Influences of time delay and noise on the chaotic motion of a bistable system, Phys. Lett. A, 352, 1-2, 21-35 (2006) · Zbl 1187.93058 · doi:10.1016/j.physleta.2005.11.061
[12] Guo, W.; Mei, D.-C., Stochastic resonance in a tumor-immune system subject to bounded noises and time delay, Physica A: Stat. Mech. Appl, 416, 90-98 (2014) · Zbl 1395.92189 · doi:10.1016/j.physa.2014.08.003
[13] de Franciscis, S.; d’Onofrio, A., Cellular polarization: Interaction between extrinsic bounded noises and the wave-pinning mechanism, Phys. Rev. E, 88, 3, 032709 (2013) · doi:10.1103/PhysRevE.88.032709
[14] Naess, A.; Dimentberg, M. F.; Gaidai, O., Lotka-Volterra systems in environments with randomly disordered temporal periodicity, Phys. Rev. E, 78, 2, 021126 (2008) · doi:10.1103/PhysRevE.78.021126
[15] Ridolfi, L.; D’Odorico, P.; Laio, F., Noise-Induced Phenomena in the Environmental Sciences (2011), Cambridge University Press · Zbl 1283.60073
[16] Gong, X.; Moses, G.; Neiman, A. B.; Young, T., Noise-induced dispersion and breakup of clusters in cell cycle dynamics, J. Theor. Biol, 355, 160-169 (2014) · Zbl 1325.92030 · doi:10.1016/j.jtbi.2014.03.034
[17] Tatchim Bemmo, D.; Siewe Siewe, M.; Tchawoua, C., Combined effects of correlated bounded noises and weak periodic signal input in the modified FitzHugh-Nagumo neural model, Commun. Nonlinear Sci. Numer. Simul, 18, 5, 1275-1287 (2013) · Zbl 1402.92073 · doi:10.1016/j.cnsns.2012.09.016
[18] Yao, Y.; Cao, W.; Pei, Q.; Ma, C.; Yi, M., Breakup of spiral wave and order-disorder spatial pattern transition induced by spatially uniform cross-correlated Sine-Wiener noises in a regular network of Hodgkin-Huxley neurons, Complexity, 2018, 1 (2018) · doi:10.1155/2018/8793298
[19] Yang, T.; Zhang, C.; Han, Q.; Zeng, C.-H.; Wang, H.; Tian, D.; Long, F., Noises- and delay-enhanced stability in a bistable dynamical system describing chemical reaction, Eur. Phys. J. B, 87, 6, 1-11 (2014) · doi:10.1140/epjb/e2014-50218-x
[20] Ning, L. J.; Liu, P., The effect of sine-Wiener noises on transition in a genotype selection model with time delays, Eur. Phys. J. B, 89, 9, 201 (2016) · doi:10.1140/epjb/e2016-70138-y
[21] de Franciscis, S.; Caravagna, G.; Mauri, G.; d’Onofrio, A., Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif, Sci. Rep, 6, 1, 26980 (2016) · doi:10.1038/srep26980
[22] Dimentberg, M. F., Statistical Dynamics of Nonlinear and Time-Varying Systems., 5 (1988), Research Studies Press · Zbl 0713.70004
[23] Bobryk, R. V.; Chrzeszczyk, A., Transitions induced by bounded noise, Phys. A Stat. Mech. Appl., 358, 2-4, 263-272 (2005) · doi:10.1016/j.physa.2005.03.055
[24] Doering, C. R., A stochastic partial differential equation with multiplicative noise, Phys. Lett. A, 122, 3-4, 133-139 (1987) · doi:10.1016/0375-9601(87)90791-2
[25] Cai, G. Q.; Lin, Y. K., Generation of non-Gaussian stationary stochastic processes, Phys. Rev. E, 54, 1, 299-303 (1996) · doi:10.1103/PhysRevE.54.299
[26] Kessler, M.; Sørensen, M.; Sorensen, M., Estimating equations based on eigen function for a discretely observed diffusion process, Bernoulli, 5, 2, 299-314 (1999) · Zbl 0980.62074 · doi:10.2307/3318437
[27] Doering, C. R.; Sargsyan, K. V.; Smereka, P., A numerical method for some stochastic differential equations with multiplicative noise, Phys. Lett. A, 344, 2-4, 149-155 (2005) · Zbl 1194.65024 · doi:10.1016/j.physleta.2005.06.045
[28] Domingo, D.; d’Onofrio, A.; Flandoli, F., Boundedness vs unboundedness of a noise linked to tsallis q-statistics: the role of the overdamped approximation, J. Math. Phys, 58, 3, 033301 (2017) · Zbl 1361.60056 · doi:10.1063/1.4977081
[29] Revuz, D.; Yor, M., Continuous Martingales and Brownian Motion. (1994), Paris: Springer, Paris · Zbl 0804.60001
[30] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (1970), New York: Dover Publications, New York · Zbl 0515.33001
[31] Zhuravlev, M. V.; Kiselev, E. A.; Minin, L. A.; Sitnik, S. M., Jacobi theta-functions and systems of integral shifts of Gaussian functions, J. Math. Sci, 173, 2, 231-241 (2011) · Zbl 1219.42023 · doi:10.1007/s10958-011-0246-5
[32] Lévy, P., Processus Stochastiques et Mouvement Brownien (1965), Paris: Gauthier-Villars, Paris · Zbl 0137.11602
[33] Karatzas, I.; Shreve, S., Graduate Texts in Mathematics, 113, Brownian Motion and Stochastic Calculus (1998), Springer
[34] Strook, D. W.; Varadhan, S., Multidimensional Diffusion Processes (1979), Springer · Zbl 0426.60069
[35] Cherny, A. S., On the strong and weak solutions of stochastic differential equations governing Bessel processes, Stoch. Stoch. Rep., 70, 3-4, 213-219 (2000) · Zbl 0970.60066 · doi:10.1080/17442500008834252
[36] Göing-Jaeschke, A.; Yor, M., A survey and some generalizations of Bessel processes, Bernoulli, 9, 2, 313-349 (2003) · Zbl 1038.60079 · doi:10.3150/bj/1068128980
[37] Sokal, A. D.; DeWitt-Morette, C.; Cartier, P.; Folacci, A., Functional Integration, Monte Carlo methods in statistical mechanics: Foundations and new algorithms (1997), Boston, MA: Springer, Boston, MA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.