×

A dynamical model of the adaptive immune system: effects of cells promiscuity, antigens and B-B interactions. (English) Zbl 1456.92078

Summary: We analyse a minimal model for the immune response in the adaptive immune system comprising three different players: antigens, T and B cells. We assume B-T interactions to be diluted and sampled locally from heterogeneous degree distributions, which mimic B cells receptors’ promiscuity. We derive dynamical equations for the order parameters quantifying the B cells activation and study the nature and stability of the stationary solutions using linear stability analysis and Monte Carlo simulations. The system’s behaviour is studied in different scaling regimes of the number of B cells, dilution in the interactions and number of antigens. Our analysis shows that: (i) B cells activation depends on the number of receptors in such a way that cells with an insufficient number of triggered receptors cannot be activated; (ii) idiotypic (i.e. B-B) interactions enhance parallel activation of multiple clones, improving the system’s ability to fight different pathogens in parallel; (iii) the higher the fraction of antigens within the host the harder is for the system to sustain parallel signalling to B cells, crucial for the homeostatic control of cell numbers.

MSC:

92C50 Medical applications (general)
82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics
92C30 Physiology (general)
92C42 Systems biology, networks

References:

[1] Abbas A K, Lichtman A H and Pillai S 2014 Cellular and Molecular Immunology: with STUDENT CONSULT Online Access (London: Elsevier)
[2] Parisi G 1990 Proc. Natl Acad. Sci. USA87 429 · doi:10.1073/pnas.87.1.429
[3] Weisbuch G, De Boer R J and Perelson A S 1990 J. Theor. Biol.146 483-99 · doi:10.1016/S0022-5193(05)80374-1
[4] Mora T, Walczak A M, Bialek W and Callan C G Jr 2010 Proc. Natl Acad. Sci. USA107 5405 · doi:10.1073/pnas.1001705107
[5] Agliari E, Barra A, Bartolucci S, Galluzzi A, Guerra F and Moauro F 2013 Phys. Rev. E 87 042701 · doi:10.1103/PhysRevA.87.042701
[6] Bartolucci S and Annibale A 2014 J. Phys. A: Math. Theor.47 415001 · Zbl 1308.82039 · doi:10.1088/1751-8113/47/41/415001
[7] Kouskoff V, Lacaud G, Pape K, Retter M and Nemazee D 2000 Proc. Natl Acad. Sci. USA97 7435-9 · doi:10.1073/pnas.130182597
[8] Jerne N K 1974 Ann. d’immunologie125 373-89
[9] Raff M 1977 Nature265 205-7 · doi:10.1038/265205a0
[10] Menshikov I and Beduleva L 2007 Int. Immunology20 193-8 · doi:10.1093/intimm/dxm131
[11] Pendergraft W F, Preston G A, Shah R R, Tropsha A, Carter C W, Jennette J C and Falk R J 2004 Nat. Med.10 72-79 · doi:10.1038/nm968
[12] Shoenfeld Y 2004 Nat. Med.10 17-18 · doi:10.1038/nm0104-17
[13] Janeway C A, Travers P, Walport M and Shlomchik M 2001 Immunobiology: the Immune System in Health and Disease 5th edn (New York: Garland Science) Immunological memory, Available from: http://www.ncbi.nlm.nih.gov/books/NBK27158/
[14] Hopfield J J 1982 Proc. Natl Acad. Sci. USA79 2554-8 · Zbl 1369.92007 · doi:10.1073/pnas.79.8.2554
[15] Amit D J, Gutfreund H and Somplinsky H 1895 Phys. Rev. A 32 1007-18 · doi:10.1103/PhysRevA.32.1007
[16] Mezard M, Parisi G and Virasoro A 1987 Spin Glass Theory and Beyond (Singapore: World Scientific) · Zbl 0992.82500
[17] Amit D J 1989 Modelling Brain Function (Cambridge: Cambridge University Press) · Zbl 0709.92001 · doi:10.1017/CBO9780511623257
[18] Coolen A C, Kuehn R and Sollich P 2005 Theory of Neural Information Processing Systems (Oxford: Oxford University Press) · Zbl 1117.68064
[19] Agliari E, Annibale A, Barra A, Coolen A C C and Tantari D 2013 J. Phys. A: Math. Theor46 415003 · Zbl 1300.92040
[20] Sollich P, Tantari D, Annibale A and Barra A 2014 Phys. Rev. Lett.113 238106 · doi:10.1103/PhysRevLett.113.238106
[21] Gao L, Zhou F, Li X and Jin Q 2010 PLoS One5 e10736 · doi:10.1371/journal.pone.0010736
[22] Zonana-Nacach A, Camargo-Coronel A, Yanez P, Sánchez L, Jimenez-Balderas F J and Fraga A 2001 Lupus10 505-10 · doi:10.1191/096120301678416088
[23] Kochmański M, Paszkiewicz T and Wolski S 2013 Eur. J. Phys.34 1555 · Zbl 1292.82047 · doi:10.1088/0143-0807/34/6/1555
[24] De Monvel J H B and Martin O C 1995 Bull. Math. Biol.57 109-36 · Zbl 0811.92010 · doi:10.1007/BF02458319
[25] Viola A and Lanzavecchia A 1996 Science273 104-6 · doi:10.1126/science.273.5271.104
[26] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (New York: Dover) · Zbl 0543.33001
[27] Laughton S N and Coolen A C C 1995 J. Stat. Phys.80 375-87 · Zbl 1081.82609 · doi:10.1007/BF02178364
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.