×

Inference for local distributions at high sampling frequencies: a bootstrap approach. (English) Zbl 1456.62249

Summary: We study inference for the local innovations of Itô semimartingales. Specifically, we construct a resampling procedure for the empirical CDF of high-frequency innovations that have been standardized using a nonparametric estimate of its stochastic scale (volatility) and truncated to rid the effect of “large” jumps. Our locally dependent wild bootstrap (LDWB) accommodate issues related to the stochastic scale and jumps as well as account for a special block-wise dependence structure induced by sampling errors. We show that the LDWB replicates first and second-order limit theory from the usual empirical process and the stochastic scale estimate, respectively, in addition to an asymptotic bias. Moreover, we design the LDWB sufficiently general to establish asymptotic equivalence between it and a nonparametric local block bootstrap, also introduced here, up to second-order distribution theory. Finally, we introduce LDWB-aided Kolmogorov-Smirnov tests for local Gaussianity as well as local von-Mises statistics, with and without bootstrap inference, and establish their asymptotic validity using the second-order distribution theory. The finite sample performance of CLT and LDWB-aided local Gaussianity tests is assessed in a simulation study and an empirical application. Whereas the CLT test is oversized, even in large samples, the size of the LDWB tests is accurate, even in small samples. The empirical analysis verifies this pattern, in addition to providing new insights about the fine scale distributional properties of innovations to equity indices, commodities and exchange rates.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62G09 Nonparametric statistical resampling methods
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)

References:

[1] Aït-Sahalia, Y.; Jacod, J., Estimating the degree of activity of jumps in high frequency data, Ann. Statist., 37, 2202-2244 (2009) · Zbl 1173.62060
[2] Aït-Sahalia, Y.; Jacod, J., Is Brownian motion necessary to model high-frequency data?, Ann. Statist., 38, 3093-3128 (2010) · Zbl 1327.62118
[3] Ait-Sahalia, Y.; Xiu, D., A Hausman test for the presence of market microstructure noise in high frequency data, J. Econometrics, 211, 176-205 (2019) · Zbl 1452.62873
[4] Andersen, T. G.; Benzoni, L., Stochastic volatility, (Meyers, R. A., Complex Systems in Economics and Finance (2011), Springer-Verlag), 694-726
[5] Andersen, T. G.; Bollerslev, T.; Dobrev, D., No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications, J. Econometrics, 138, 125-180 (2007) · Zbl 1418.62371
[6] Andersen, T. G.; Bondarenko, O.; Todorov, V.; Tauchen, G., The fine structure of equity-index option dynamics, J. Econometrics, 187, 532-546 (2015) · Zbl 1337.91135
[7] Andersen, T. G.; Fusari, N.; Todorov, V.; Varneskov, R. T., Option panels in pure-jump settings, Econom. Theory, 35, 901-942 (2019) · Zbl 1432.62356
[8] Ané, T.; Geman, H., Order flow, transaction clock and normality of asset returns, J. Finance, 55, 2259-2284 (2000)
[9] Arcones, M. A.; Giné, E., On the bootstrap of \(U\) and \(V\) statistics, Ann. Statist., 20, 655-674 (1992) · Zbl 0760.62018
[10] Back, K., Asset prices for general processes, J. Math. Econom., 20, 317-395 (1991) · Zbl 0727.90014
[11] Baeumer, B.; Meerschaert, M., Tempered stable Levy motion and transit superdiffusion, J. Comput. Appl. Math., 223, 2438-2448 (2009) · Zbl 1423.60079
[12] Bandi, F. M.; Russell, J. R., Microstructure noise, realized variance, and optimal sampling, Rev. Econom. Stud., 75, 339-369 (2008) · Zbl 1138.91394
[13] Barndorff-Nielsen, O. E.; Hansen, P.; Lunde, A.; Shephard, N., Realized kernels in practice: Trades and quotes, Econom. J., 12, 3, C1-C32 (2009) · Zbl 1179.91259
[14] Barndorff-Nielsen, O. E.; Shephard, N., Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. R. Stat. Soc. Ser. B Stat. Methodol., 63, 167-241 (2001) · Zbl 0983.60028
[15] Beutner, E.; Zähle, H., Continuous mapping approach to the asymptotics of \(U\)- and \(V\)-statistics, Bernoulli, 20, 846-877 (2014) · Zbl 1303.60019
[16] Bhattacharya, R. N.; Rao, R. R., Normal Approximation and Asymptotic Expansions, Classics in Applied Mathematics (1986), Siam · Zbl 0657.41001
[17] Bickel, P. J.; Freedman, D. A., Some asymptotic theory for the bootstrap, Ann. Statist., 9, 1196-1217 (1981) · Zbl 0449.62034
[18] Bühlmann, P., Blockwise bootstrapped empirical processes for stationary sequences, Ann. Statist., 22, 995-1012 (1994) · Zbl 0806.62032
[19] Carlstein, E., The use of subseries values for estimating the variance of a general statistic from a stationary time series, Ann. Statist., 14, 1171-1179 (1986) · Zbl 0602.62029
[20] Carr, P.; Geman, H.; Madan, D. B.; Yor, M., The fine structure of asset returns: An empirical investigation, J. Bus., 75, 305-332 (2002)
[21] Carr, P.; Geman, H.; Madan, D. B.; Yor, M., Stochastic volatility for Lévy processes, Math. Finance, 58, 345-382 (2003) · Zbl 1092.91022
[22] Carr, P.; Wu, L., The finite moment log stable process and option pricing, J. Finance, LVIII, 753-778 (2003)
[23] Carr, P.; Wu, L., Time-changed Lévy processes and option pricing, J. Financ. Econ., 17, 113-141 (2004)
[24] Chernov, M.; Gallant, A. R.; Ghysels, E.; Tauchen, G., Alternative models for stock price dynamics, J. Econometrics, 116, 225-257 (2003) · Zbl 1043.62087
[25] Clark, P. K., A subordinated stochastic process model with finite variance for speculative prices, Econometrica, 41, 135-155 (1973) · Zbl 0308.90011
[26] Cont, R.; Mancini, C., Nonparametric tests for pathwise properties of semimartingales, Bernoulli, 17, 781-813 (2011) · Zbl 1345.62074
[27] Davidson, R.; Flachaire, E., The wild bootstrap, tamed at last, J. Econometrics, 146, 162-169 (2008) · Zbl 1418.62183
[28] Davidson, R.; MacKinnon, J. G., The power of bootstrap and asymptotic tests, J. Econometrics, 133, 421-441 (2006) · Zbl 1345.62058
[29] Delbaen, F.; Schachermayer, W., A general version of the fundamental version of asset pricing, Math. Ann., 300, 463-520 (1994) · Zbl 0865.90014
[30] Doukhan, P.; Lang, G.; Leucht, A.; Neumann, M. H., Dependent wild bootstrap for the empirical process, J. Time Series Anal., 36, 290-314 (2015) · Zbl 1325.62065
[31] Dovonon, P.; Gonçalves, S.; Hounyo, U.; Meddahi, N., Bootstrapping high-frequency jump tests, J. Amer. Statist. Assoc., 114, 793-803 (2019) · Zbl 1420.62195
[32] Efron, B., Bootstrap methods: Another look at the jackknife, Ann. Statist., 7, 1-26 (1979) · Zbl 0406.62024
[33] Fama, E., Mandelbrot and the stable paretian hypothesis, J. Bus., 36, 420-429 (1963)
[34] Fama, E.; Roll, R., Some properties of symmetric stable processes, J. Amer. Statist. Assoc., 63, 817-836 (1968)
[35] Gine, E.; Zinn, J., Bootstrapping general empirical measures, Ann. Probab., 18, 851-869 (1990) · Zbl 0706.62017
[36] Gonçalves, S.; Meddahi, N., Bootstrapping realized volatility, Econometrica, 1, 283-306 (2009) · Zbl 1160.91397
[37] Hall, P.; Heyde, C. C., Martingale Limit Theory and Its Appplication (1980), Academic Press: Academic Press Boston · Zbl 0462.60045
[38] Han, Q.; Wellner, J. A., Convergence rates of least squares regression estimators with heavy-tailed errors, Ann. Statist., 47, 2286-2319 (2019) · Zbl 1466.60033
[39] Hansen, P. R.; Lunde, A., Realized variance and market microstructure noise, J. Bus. Econom. Statist., 24, 127-161 (2006)
[40] Horowitz, J. L.; Savin, N. E., Empirically relevant critical values for hypothesis tests: A bootstrap approach, J. Econometrics, 95, 375-389 (2000) · Zbl 0971.62013
[41] Hounyo, U., A local Gaussian bootstrap method for realized volatility and realized beta, Econometric Theory, 35, 360-416 (2019) · Zbl 1428.62499
[42] Hounyo, U.; Varneskov, R. T., A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation, J. Econometrics, 198, 10-28 (2017) · Zbl 1456.62171
[43] Huang, X.; Tauchen, G., The relative contribution of jumps to total price variance, J. Financ. Econ., 3, 456-499 (2005)
[44] Jacod, J., Statistics and high frequency data, (Kessler, M.; Lindner, A.; Sørensen, M., Statistical Methods for Stochastic Differential Equations (2012), CRC Press) · Zbl 1375.62025
[45] Jacod, J.; Protter, P., Discretization of Processes (2012), Springer-Verlag: Springer-Verlag Berlin · Zbl 1259.60004
[46] Jing, B.-Y.; Kong, X.-B.; Liu, Z., Estimating the jump activity index under noisy observations using high-frequency data, J. Amer. Statist. Assoc., 106, 558-568 (2011) · Zbl 1232.62114
[47] Jing, B.-Y.; Kong, X.-B.; Liu, Z., Modeling high-frequency financial data by pure jump processes, Ann. Statist., 40, 759-784 (2012) · Zbl 1273.62195
[48] Kelly, B.; Jiang, H., Tail risk and asset prices, Rev. Financ. Stud., 27, 817-836 (2014)
[49] Klüppelberg, C.; Meyer-Brandi, T.; Schmidt, A., Electricity spot price modelling with a view towards extreme spike risk, Quant. Finance, 10, 963-974 (2010) · Zbl 1210.91155
[50] Kunsch, H. R., The jackknife and the bootstrap for general stationary observations, Ann. Statist., 17, 1217-1241 (1989) · Zbl 0684.62035
[51] Lee, S. S.; Mykland, P., Jumps in equilibrium prices and market microstructure, J. Econometrics, 168, 2012 (2012) · Zbl 1443.62360
[52] Leucht, A.; Neumann, M. H., Dependent wild bootstrap for degenerate \(U\)- and \(V\)-statistics, J. Multivariate Anal., 117, 257-280 (2013) · Zbl 1279.62102
[53] Liu, R. Y., Bootstrap procedures under some non-i.i.d. models, Ann. Statist., 16, 1696-1708 (1988) · Zbl 0655.62031
[54] Liu, R. Y.; Singh, K., Moving blocks jackknife and bootstrap Capture weak dependence, (LePage, R.; Bilard, L., Exploring the Limits of Bootstrap (1992), Wiley: Wiley New York), 225-248 · Zbl 0838.62036
[55] Mandelbrot, B., Stable paretian random functions and the multiplicative variation of income, Econometrica, 29, 517-543 (1961) · Zbl 0104.38402
[56] Mandelbrot, B., The variation of certain speculative prices, J. Bus., 36, 394-419 (1963)
[57] Mikosch, T.; Resnik, S.; Rootzen, H.; Stegeman, A., Is network traffic approximated approximated by stable Levy montion or fractional Brownian motion?, Ann. Appl. Probab., 12, 23-68 (2002) · Zbl 1021.60076
[58] Monroe, I., Processes that can be embedded in Brownian motion, Ann. Probab., 6, 42-56 (1978) · Zbl 0392.60057
[59] Naik-Nimbalkar, U. V.; Rajarshi, M. B., Validity of blockwise bootstrap for empirical processes with stationary observations, Ann. Statist., 22, 980-994 (1994) · Zbl 0808.62043
[60] Paparoditis, E.; Politis, D. N., Tapered block bootstrap, Biometrika, 88, 1105-1119 (2001) · Zbl 0987.62027
[61] Paparoditis, E.; Politis, D. N., The tapered block bootstrap for general statistics from stationary sequences, Econom. J., 5, 131-148 (2002) · Zbl 1009.62034
[62] Præstgaard, J.; Wellner, J. A., Exchangeability weighted bootstraps of the general empirical process, Ann. Probab., 21, 2053-2086 (1993) · Zbl 0792.62038
[63] Sato, K., Lévy processes and Infinitely Divisible Distributions (1999), Cambridge University Press: Cambridge University Press United Kingdom · Zbl 0973.60001
[64] Shao, X., The dependent wild bootstrap, J. Amer. Statist. Assoc., 105, 218-235 (2010) · Zbl 1397.62121
[65] Shao, X., A bootstrap-assisted spectral test of white noise under unknown dependence, J. Econometrics, 162, 213-224 (2011) · Zbl 1441.62869
[66] Shapiro, S. S.; Wilk, M. B., An analysis of variance test for normality (complete samples), Biometrika, 52, 591-611 (1965) · Zbl 0134.36501
[67] Shapiro, S. S.; Wilk, M. B.; Chen, H. J., A comparative study of various tests for normality, J. Amer. Statist. Assoc., 63, 1343-1372 (1968)
[68] Smeekes, S., Urbain, J.-P., 2014. A multivariate invariance principle for modified wild bootstrap methods with an application to unit root testing, Unpublished manuscript, Maastricht University.
[69] Stephens, M. A., EDF statistics for goodness of fit and some comparisons, J. Amer. Statist. Assoc., 69, 730-737 (1974)
[70] Todorov, V., Estimation of continuous-time stochastic volatility models with jumps using high-frequency data, J. Econometrics, 148, 131-148 (2009) · Zbl 1429.62480
[71] Todorov, V., Jump activity estimation for pure-jump semimartingales via self-normalized statistics, Ann. Statist., 43, 1831-1864 (2015) · Zbl 1317.62022
[72] Todorov, V.; Tauchen, G., Activity signature functions for high-frequency data analysis, J. Econometrics, 154, 125-138 (2010) · Zbl 1431.62483
[73] Todorov, V.; Tauchen, G., Limit theorems for power variations of pure-jump processes with application to activity estimation, Ann. Appl. Probab., 21, 546-588 (2011) · Zbl 1215.62088
[74] Todorov, V.; Tauchen, G., Volatility jumps, J. Bus. Econom. Statist., 219, 356-371 (2011) · Zbl 1219.91156
[75] Todorov, V.; Tauchen, G., Realized Laplace transforms for pure-jump semimartingales, Ann. Statist., 40, 1233-1262 (2012) · Zbl 1274.62191
[76] Todorov, V.; Tauchen, G., Limit theorems for the empirical distribution function of scaled increments of Itô semimartingales at high frequencies, Ann. Appl. Probab., 24, 1850-1888 (2014) · Zbl 1429.62371
[77] Todorov, V.; Tauchen, G.; Grynkiv, I., Volatility activity: Specification and estimation, J. Econometrics, 178, 180-193 (2014) · Zbl 1293.91200
[78] van der Vaart, A. W., Asymptotic Statistics (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0910.62001
[79] Wu, L., Modeling financial security returns using Lévy processes, (Birge, J.; Linetsky, L., Handbooks in Operations Research and Management Science, Volume 15: Financial Engineering (2008), Elsevier, North Holland)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.