×

A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation. (English) Zbl 1456.62171

Summary: We provide a new resampling procedure-the local stable bootstrap-that is able to mimic the dependence properties of realized power variations for pure-jump semimartingales observed at different frequencies. This allows us to propose a bootstrap estimator and inference procedure for the activity index of the underlying process, \(\beta\), as well as bootstrap tests for whether it obeys a jump-diffusion or a pure-jump process, that is, of the null hypothesis \(\mathcal{H}_0:\beta=2\) against the alternative \(\mathcal{H}_1:\beta<2\). We establish first-order asymptotic validity of the resulting bootstrap power variations, activity index estimator, and diffusion tests for \(\mathcal{H}_0\). Moreover, the finite sample size and power properties of the proposed diffusion tests are compared to those of benchmark tests using Monte Carlo simulations. Unlike existing procedures, our bootstrap tests are correctly sized in general settings. Finally, we illustrate the use and properties of the new bootstrap diffusion tests using high-frequency data on three FX series, the S&P 500, and the VIX.

MSC:

62M05 Markov processes: estimation; hidden Markov models
60G48 Generalizations of martingales
60G51 Processes with independent increments; Lévy processes
62G09 Nonparametric statistical resampling methods
62P05 Applications of statistics to actuarial sciences and financial mathematics

References:

[1] Andersen, T. G.; Benzoni, L., Stochastic volatility, (Meyers, R. A., Complex Systems in Finance and Economics (2011), Springer-Verlag), 694-726
[2] Andersen, T. G.; Bondarenko, O.; Todorov, V.; Tauchen, G., The fine structure of equity-index option dynamics, J. Econometrics, 187, 532-546 (2015) · Zbl 1337.91135
[3] Andrews, D. W. K., Inconsistency of the bootstrap when a parameter is the boundary of the parameter space, Econometrica, 68, 399-405 (2000) · Zbl 1015.62044
[4] Aït-Sahalia, Y., Disentangling diffusions from jumps, J. Financ. Econ., 74, 487-528 (2004)
[5] Aït-Sahalia, Y.; Jacod, J., Estimating the degree of activity of jumps in high frequency data, Ann. Statist., 37, 2202-2244 (2009) · Zbl 1173.62060
[6] Aït-Sahalia, Y.; Jacod, J., Is Brownian motion necessary to model high-frequency data?, Ann. Statist., 38, 3093-3128 (2010) · Zbl 1327.62118
[7] Aït-Sahalia, Y.; Jacod, J., Analyzing the spectrum of asset returns: Jump and volatility components in high frequency data, J. Econ. Literature, 50, 1007-1050 (2012)
[8] Barndorff-Nielsen, O. E.; Graversen, S. E.; Jacod, J.; Shephard, N., Limit theorems for bipower variation in financial econometrics, Econometric Theory, 22, 677-719 (2006) · Zbl 1125.62114
[9] Barndorff-Nielsen, O. E.; Shephard, N., Non-gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. R. Stat. Soc. Ser. B, 63, 167-241 (2001) · Zbl 0983.60028
[10] Barndorff-Nielsen, O. E.; Shephard, N., Realized power variation and stochastic volatility models, Bernoulli, 9, 243-265 (2003) · Zbl 1026.60054
[11] Barndorff-Nielsen, O. E.; Shephard, N., Power and bipower variation with Stochastic volatility and jumps, J. Financ. Econom., 2, 1-37 (2004)
[12] Barndorff-Nielsen, O. E.; Shephard, N., How accurate is the asymptotic approximation to the distribution of realised volatility?, (Andrews, D.; Powell, J.; Ruud, P.; Stock, J., Identification and Inference for Econometric Models (2005), Cambridge University Press: Cambridge University Press Cambridge, UK), 306-372, A Festschrift in Honour of T.J. Rothenberg · Zbl 1121.62018
[13] Bhattacharya, R. N.; Rao, R. R., (Normal Approximation and Asymptotic Expansions. Normal Approximation and Asymptotic Expansions, Classics in Applied Mathematics (1986), Siam) · Zbl 0331.41023
[14] Blumenthal, R.; Getoor, R., Sample functions of stochastic processes with independent increments, J. Math. Mech., 10, 493-516 (1961) · Zbl 0097.33703
[15] Carr, P.; Geman, H.; Madan, D. B.; Yor, M., The fine structure of asset returns: An empirical investigation, J. Bus., 75, 305-332 (2002)
[16] Carr, P.; Geman, H.; Madan, D. B.; Yor, M., Stochastic volatility for Lévy processes, Math. Finance, 58, 345-382 (2003) · Zbl 1092.91022
[17] Carr, P.; Wu, L., The finite moment log stable process and option pricing, J. Finance, LVIII, 753-778 (2003)
[18] Carr, P.; Wu, L., Stochastic skew in currency options, J. Financ. Econ., 86, 213-247 (2007)
[19] Chernov, M.; Gallant, A. R.; Ghysels, E.; Tauchen, G., Alternative models for stock price dynamics, J. Econometrics, 116, 225-257 (2003) · Zbl 1043.62087
[20] Cont, R.; Mancini, C., Nonparametric tests for pathwise properties of semimartingales, Bernoulli, 17, 781-813 (2011) · Zbl 1345.62074
[22] Davidson, R.; MacKinnon, J. G., The size distortion of bootstrap tests, Econometric Theory, 15, 361-376 (1999) · Zbl 0963.62025
[23] Davidson, R.; MacKinnon, J. G., The power of bootstrap and asymptotic tests, J. Econometrics, 133, 421-441 (2006) · Zbl 1345.62058
[24] Dovonon, P.; Gonçalves, S.; Hounyo, U.; Meddahi, N., Bootstrapping High-Frequency Jump Tests (2015), University of Montreal, (unpublished manuscript)
[25] Gonçalves, S.; Meddahi, N., Bootstrapping realized volatility, Econometrica, 1, 283-306 (2009) · Zbl 1160.91397
[26] Hall, P.; Wilson, S. R., Two guidelines for bootstrap hypothesis testing, Biometrics, 47, 757-762 (1991)
[27] Horowitz, J. L.; Savin, N. E., Empirically relevant critical values for hypothesis tests: A bootstrap approach, J. Econometrics, 95, 375-389 (2000) · Zbl 0971.62013
[28] Hounyo, U., Bootstrapping Realized Volatility and Realized Beta Under A Local Gaussianity Assumption (2016), University of Oxford, (unpublished manuscript)
[29] Hounyo, U., Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading, J. Econometrics, 197, 130-152 (2017) · Zbl 1443.62355
[30] Hounyo, U.; Gonçalves, S.; Meddahi, N., Bootstrapping pre-averaged realized volatility under market microstructure noise, Econometric Theory (2016), (forthcoming) · Zbl 1441.62742
[31] Huang, X.; Tauchen, G., The relative contribution of jumps to total price variance, J. Financ. Econom., 3, 456-499 (2005)
[32] Jacod, J., Asymptotic properties of realized power variations and related functionals of semimartingales, Stochastic Process. Appl., 118, 517-559 (2008) · Zbl 1142.60022
[33] Jacod, J.; Protter, P., Discretization of Processes (2012), Springer-Verlag: Springer-Verlag Berlin · Zbl 1259.60004
[34] Jacod, J.; Shiryaev, A. N., Limit Theorems for Stochastic Processes (2003), Springer-Verlag: Springer-Verlag New-York · Zbl 1018.60002
[35] Jing, B.-Y.; Kong, X.-B.; Liu, Z., Modeling high-frequency financial data by pure jump processes, Ann. Statist., 40, 759-784 (2012) · Zbl 1273.62195
[36] Jing, B.-Y.; Kong, X.-B.; Liu, Z.; Mykland, P., On the jump activity index for semimartingales, J. Econometrics, 166, 213-223 (2012) · Zbl 1441.62754
[37] Jing, B.-Y.; Kong, X.-B.; Liu, Z., Estimating the jump activity index under noisy observations using high-frequency data, J. Amer. Statist. Assoc., 106, 558-568 (2011) · Zbl 1232.62114
[38] Klüppelberg, C.; Lindner, A.; Maller, R., A continuous-time GARCH process driven by a Lévy process: Stationarity and second-order behavior, J. Appl. Probab., 41, 601-622 (2004) · Zbl 1068.62093
[39] MacKinnon, J. G., Bootstrap hypothesis testing, (Belsley, D. A.; Kontoghiorghes, J., Handbook of Computational Econometrics (2009), Chichester, Wiley)
[40] Pauly, M., Weighted resampling of martingale difference arrays with applications, Electron. J. Stat., 5, 41-52 (2011) · Zbl 1274.62307
[41] Rosinski, J., Series representations of Lévy processes from the perspective of point processes, (Barndorff-Nielsen, O. E.; Mikosch, T.; Resnick, S., ‘Lévy Processes-Theory and Applications (2001), Birkhäser: Birkhäser Boston) · Zbl 0985.60048
[42] Rosinski, J., Tempering stable processes, Stochastic Process. Appl., 117, 677-707 (2007) · Zbl 1118.60037
[43] Shao, X., The dependent wild bootstrap, J. Amer. Statist. Assoc., 105, 218-235 (2010) · Zbl 1397.62121
[44] Todorov, V., Estimation of continuous-time stochastic volatility models with jumps using high-frequency data, J. Econometrics, 148, 131-148 (2009) · Zbl 1429.62480
[45] Todorov, V., Power variation from second order differences for pure jump semimartingales, Stochastic Process. Appl., 123, 2819-2850 (2013) · Zbl 1323.60060
[46] Todorov, V., Jump activity estimation for pure-jump semimartingales via self-normalized statistics, Ann. Statist., 43, 1831-1864 (2015) · Zbl 1317.62022
[47] Todorov, V.; Tauchen, G., Limit theorems for power variations of pure-jump processes with application to activity estimation, Ann. Appl. Probab., 21, 546-588 (2011) · Zbl 1215.62088
[48] Todorov, V.; Tauchen, G., Realized laplace transforms for pure-jump semimartingales, Ann. Statist., 40, 1233-1262 (2012) · Zbl 1274.62191
[49] Todorov, V.; Tauchen, G., Activity signature functions for high-frequency data analysis, J. Econometrics, 154, 125-138 (2010) · Zbl 1431.62483
[50] Todorov, V.; Tauchen, G.; Grynkiv, I., Volatility activity: Specification and estimation, J. Econometrics, 178, 180-193 (2014) · Zbl 1293.91200
[51] Varneskov, R. T., Estimating the quadratic variation spectrum of noisy asset prices using generalized flat-top realized kernels, Econometric Theory (2016), (forthcoming)
[52] Woerner, J., Variational sums and power variation: A unifying approach to model selection and estimation in semimartingale models, Statist. Decisions, 21, 47-68 (2003) · Zbl 1046.62084
[53] Woerner, J., Inference in Lévy-type stochastic volatility models, Adv. Appl. Probab., 39, 531-549 (2007) · Zbl 1127.62104
[54] Wu, L., Dampened power law: Reconciling the tail behavior of financial security returns, J. Bus., 79, 1445-1473 (2006)
[55] Wu, L., Modeling financial security returns using Lévy processes, (Birge, J.; Linetsky, L., Handbooks in Operations Research and Management Science. Handbooks in Operations Research and Management Science, Financial Engineering, vol. 15 (2008), Elsevier: Elsevier North Holland)
[56] Zhao, Z.; Wu, W. B., Nonparametric inference of discretely sampled stable Lévy processes, J. Econometrics, 153, 83-92 (2009) · Zbl 1431.62345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.