×

Generalized entanglement entropy, charges, and intertwiners. (English) Zbl 1454.83071

Summary: The entanglement theory in quantum systems with internal symmetries is rich due to the spontaneous creation of entangled pairs of charge/anti-charge particles at the entangling surface. We call these pair creation operators the bi-local intertwiners because of the role they play in the representation theory of the symmetry group. We define a generalized measure of entanglement entropy as a measure of information erased under restriction to a subspace of observables. We argue that the correct entanglement measure in the presence of charges is the sum of two terms; one measuring the entanglement of charge-neutral operators, and the other measuring the contribution of the bi-local intertwiners. Our expression is unambiguously defined in lattice models as well in quantum field theory (QFT). We use the Tomita-Takesaki modular theory to highlight the differences between QFT and lattice models, and discuss an extension of the algebra of QFT that leads to a factorization of the charged modes.

MSC:

83C65 Methods of noncommutative geometry in general relativity
81P42 Entanglement measures, concurrencies, separability criteria

References:

[1] H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B600 (2004) 142 [hep-th/0405111] [INSPIRE]. · Zbl 1247.81021
[2] H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D85 (2012) 125016 [arXiv:1202.5650] [INSPIRE]. · Zbl 1397.81034
[3] H. Casini, E. Teste and G. Torroba, Modular Hamiltonians on the null plane and the Markov property of the vacuum state, J. Phys. A50 (2017) 364001 [arXiv:1703.10656] [INSPIRE]. · Zbl 1376.81066
[4] T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A42 (2009) 504008 [arXiv:0905.0932] [INSPIRE]. · Zbl 1179.81138
[5] M. Horodecki, J. Oppenheim and A. Winter, Quantum state merging and negative information, Commun. Math. Phys.269 (2006) 107 [quant-ph/0512247] [INSPIRE]. · Zbl 1113.81023
[6] G. Gour, I. Marvian and R.W. Spekkens, Measuring the quality of a quantum reference frame: The relative entropy of frameness, Phys. Rev. A80 (2009) 012307 [arXiv:0901.0943].
[7] S.D. Bartlett, T. Rudolph and R.W. Spekkens, Reference frames, superselection rules and quantum information, Rev. Mod. Phys.79 (2007) 555 [quant-ph/0610030] [INSPIRE]. · Zbl 1205.81042
[8] E.T. Jaynes, Information theory and statistical mechanics. II, Phys. Rev.108 (1957) 171 [INSPIRE]. · Zbl 0084.43701
[9] H. Barnum, E. Knill, G. Ortiz, R. Somma and L. Viola, A subsystem-independent generalization of entanglement, Phys. Rev. Lett.92 (2004) 107902 [quant-ph/0305023] [INSPIRE]. · Zbl 1171.81315
[10] H. Barnum, E. Knill, G. Ortiz and L. Viola, Generalizations of entanglement based on coherent states and convex sets, Phys. Rev. A68 (2003) 032308 [quant-ph/0207149].
[11] S. Hollands and K. Sanders, Entanglement measures and their properties in quantum field theory, Springer, Germany (2018). · Zbl 1408.81005
[12] H. Casini, M. Huerta, J. M. Magán and D. Pontello, Entanglement entropy and superselection sectors. Part I. Global symmetries, JHEP02 (2020) 014 [arXiv:1905.10487]. · Zbl 1435.81116
[13] P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.06 (2004) P06002. · Zbl 1082.82002
[14] E. Witten, APS medal for exceptional achievement in research: invited article on entanglement properties of quantum field theory, Rev. Mod. Phys.90 (2018) 045003
[15] D. Buchholz and K. Fredenhagen, Locality and the structure of particle states, Commun. Math. Phys.84 (1982) 1 [INSPIRE]. · Zbl 0498.46061
[16] R. Haag, Local quantum physics: fields, particles, algebras, Springer, Germany (2012). · Zbl 0857.46057
[17] D. Petz, Quantum information theory and quantum statistics, Springer, Germany (2007). · Zbl 1145.81002
[18] N. Lashkari, Entanglement at a scale and renormalization monotones, JHEP01 (2019) 219 [arXiv:1704.05077]. · Zbl 1409.81019
[19] M. Ohya and D. Petz, Quantum entropy and its use, Springer, Germany (2004). · Zbl 0891.94008
[20] M.A. Nielsen and I. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambirdge U.K. (2002). · Zbl 1049.81015
[21] R. Longo and F. Xu, Relative entropy in CFT, Adv. Math.337 (2018) 139 [arXiv:1712.07283] [INSPIRE]. · Zbl 1398.81216
[22] O. Bratteli and D.W. Robinson, Operator algebras and quantum statistical mechanics. Volume 2: equilibrium states. models in quantum statistical mechanics, Springer, Germany (1996). · Zbl 0463.46052
[23] D. Buchholz, G. Mack and I. Todorov, The current algebra on the circle as a germ of local field theories, Nucl. Phys. B Proc. Suppl.5 (1988) 20. · Zbl 0958.22500
[24] S. Doplicher, R. Haag and J.E. Roberts, Fields, observables and gauge transformations. 2., Commun. Math. Phys.15 (1969) 173 [INSPIRE]. · Zbl 0186.58205
[25] S. Doplicher, R. Haag and J. Roberts, Fields, observables and gauge transformations, Systèmes a un nombre infini de degrés de liberté, Colloques internationaux du CNRS (1970).
[26] H. Araki et al., Mathematical theory of quantum fields, International Series of Monographs on Physics volume 101, Oxford University Press on Demand, Oxford U.K. (1999). · Zbl 0998.81501
[27] S. Doplicher and J.E. Roberts, Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics, Commun. Math. Phys.131 (1990) 51 [INSPIRE]. · Zbl 0734.46042
[28] H.J. Borchers, On revolutionizing quantum field theory with Tomita’s modular theory, J. Math. Phys.41 (2000) 3604 [INSPIRE]. · Zbl 1031.81547
[29] O. Bratteli and D.W. Robinson, Operator algebras and quantum statistical mechanics: volume 1: C ∗-and W ∗-algebras. symmetry groups. decomposition of states, Springer, Germany (2012).
[30] N. Lashkari, H. Liu and S. Rajagopal, Modular flow of excited states, arXiv:1811.05052 [INSPIRE].
[31] G.K. Pedersen et al., The Radon-Nikodym theorem for von Neumann algebras, Acta Math.130 (1973) 53. · Zbl 0262.46063
[32] N. Lashkari, Modular zero modes and sewing the states of QFT, arXiv:1911.11153 [INSPIRE].
[33] H. Araki and L. Zsido, Extension of the structure theorem of Borchers and its application to half-sided modular inclusions, Rev. Math. Phys.17 (2005) 491 [math/0412061] [INSPIRE]. · Zbl 1088.46032
[34] H. Araki, Relative entropy of states of von Neumann algebras, Publ. Res. Inst. Math. Sci. Kyoto1976 (1976) 809. · Zbl 0326.46031
[35] A. Connes, Une classification des facteurs de type III, Ann. Sci. Ecole Normale Sup.6 (1973) 133. · Zbl 0274.46050
[36] H. Araki, Relative entropy of states of von Neumann algebras, Publ. Res. Inst. Math. Sci.11 (1976) 809. · Zbl 0326.46031
[37] R. Longo, Algebraic and modular structure of von Neumann algebras of physics, Commun. Math. Phys.38 (1982) 551 [INSPIRE]. · Zbl 0504.46050
[38] M. Takesaki et al., Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math.131 (1973) 249. · Zbl 0268.46058
[39] V.F. Jones, von Neumann algebras (2015).
[40] M. Takesaki, Theory of operator algebras II, Springer, Germany (2013). · Zbl 1059.46031
[41] P.I. Etingof et al., Introduction to representation theory, American Mathematical Society, U.S.A. (2011). · Zbl 1242.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.