×

Fractional Cox-Ingersoll-Ross process with small Hurst indices. (English) Zbl 1454.60053

Let \( B^H\) be a fractional Brownian motion with Hurst parameter \(H\in (0,1)\). The fractional Cox-Ingersoll-Ross (CIR) process is defined as the pathwise solution of the stochastic differential equation \[ dX(t)= (k-aX(t)) dt + \sigma \sqrt{ X(t)} \circ dB^H(t), \qquad X(0)>0,\tag{1} \] where \(a,k,\sigma>0\) and the integral is defined as a pathwise Stratonovich integral. It is known that for \(H>1/2\), such process is strictly positive and never hits zero, whereas for \(H<1/2\) there is a positive probability that the process hits zero on a fixed time interval \([0,T]\) and this probability converges to one as \(k\) tends to \(\infty\).
This paper deals with the construction of the fractional CIR process on the whole interval \([0,T]\), when \(H<1/2\). To do this, the authors consider the solution to the stochastic differential equation \[ dY_{\varepsilon} (t)= \frac 12 \left( \frac k { Y_{\varepsilon} (s) \mathbf{1}_{\{Y_{\varepsilon} (s) >0\}} +\varepsilon} -a Y_{\varepsilon} (t) \right) dt +\frac {\sigma}2 dB^H(t),\qquad Y_{\varepsilon}(0)=Y_0>0, \] where \(a,k,\sigma, Y_0, \varepsilon>0\). They prove that the pointwise limit \(Y(t)=\lim_{\varepsilon\rightarrow 0} Y_{\varepsilon}(t)\) exists, and almost surely, it is nonnegative and positive a.e. with respect to the Lebesgue measure. Moreover, \(Y\) is continuous and satisfies the equation \[ Y(t) = Y(\alpha) + \frac 12 \int_{\alpha}^t \left( \frac k { Y(s)} -a Y (s) \right) ds +\frac {\sigma}2 (B^H(t)- B^H(\alpha)), \] for all \(t\in [\alpha, \beta]\) where \((\alpha, \beta)\) is any interval where \(Y\) is positive. Then, it is proved that the process \(X(t)= Y^2(t)\) satisfies the the stochastic differential equation (1) on any interval \((\alpha, \beta)\) where \(Y\) is positive, with initial condition \(X(\alpha)=0\).

MSC:

60G22 Fractional processes, including fractional Brownian motion
60H05 Stochastic integrals
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] Anh, V.; Inoue, A., Financial Markets with Memory I: Dynamic Models, Stoch. Anal. Appl., 23(2), 275-300 (2005) · Zbl 1108.91035 · doi:10.1081/SAP-200050096
[2] Bollerslev, T.; Mikkelsen, H. O., Modelling and pricing long memory in stock market volatility, J. Econom., 73, 1, 151-184 (2005) · Zbl 0960.62560
[3] Cheridito, P.; Kawaguchi, H.; Maejima, M., Fractional Ornstein-Uhlenbeck processes, Electron. J. Probab., 8, 1, 1-14 (2003) · Zbl 1065.60033 · doi:10.1214/EJP.v8-125
[4] Cox, J. C.; Ingersoll, J. E.; Ross, S. A., A re-examination of traditional hypotheses about the term structure of interest rates, J. Finance, 36, 769-799 (1981)
[5] Cox, J. C.; Ingersoll, J. E.; Ross, S. A., An intertemporal general equilibrium model of asset prices, Econometrica, 53, 1, 363-384 (1985) · Zbl 0576.90006 · doi:10.2307/1911241
[6] Cox, J. C.; Ingersoll, J. E.; Ross, S. A., A theory of the term structure of interest rates, J. Finance, 53, 2, 385-408 (1985) · Zbl 1274.91447 · doi:10.2307/1911242
[7] Ding, Z.; Granger, C. W.; Engle, R. F., A long memory property of stock market returns and a new model, J. Empir. Finance, 1, 1, 83-106 (1993)
[8] Euch, O., Rosenbaum, M.: The characteristic function of rough Heston models. https://arxiv.org/pdf/1609.02108.pdf. Accessed 18 Aug 2018. · Zbl 1418.91467
[9] Feller, W., Two singular diffusion problems, Ann. Math., 54, 173-182 (1951) · Zbl 0045.04901 · doi:10.2307/1969318
[10] Heston, S. L., A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6, 2, 327-343 (1993) · Zbl 1384.35131
[11] Kuchuk-Iatsenko, S.; Mishura, Y., Pricing the European call option in the model with stochastic volatility driven by Ornstein-Uhlenbeck process. Exact formulas, Mod. Stoch. Theory Appl., 2, 3, 233-249 (2015) · Zbl 1403.91345 · doi:10.15559/15-VMSTA36CNF
[12] Kuchuk-Iatsenko, S.; Mishura, Y.; Munchak, Y., Application of Malliavin calculus to exact and approximate option pricing under stochastic volatility, Theory Probab. Math. Stat., 94, 93-115 (2016) · Zbl 1377.91160 · doi:10.1090/tpms/1012
[13] Leonenko, N.; Meerschaert, M.; Sikorskii, A., Correlation structure of fractional Pearson diffusion, Comput. Math. Appl., 66, 5, 737-745 (2013) · Zbl 1381.60112 · doi:10.1016/j.camwa.2013.01.009
[14] Leonenko, N.; Meerschaert, M.; Sikorskii, A., Fractional Pearson diffusion, J. Math. Anal. Appl., 403, 2, 532-546 (2013) · Zbl 1297.60057 · doi:10.1016/j.jmaa.2013.02.046
[15] Marie, N., A generalized mean-reverting equation and applications, ESAIM Probab. Stat., 18, 799-828 (2014) · Zbl 1308.60074 · doi:10.1051/ps/2014002
[16] Mishura, Y., Stochastic Calculus for Fractional Brownian Motion and Related Processes (2008) · Zbl 1138.60006 · doi:10.1007/978-3-540-75873-0
[17] Mishura, Y.; Piterbarg, V.; Ralchenko, K.; Yurchenko-Tytarenko, A., Stochastic representation and pathwise properties of fractional Cox-Ingersoll-Ross process (in Ukrainian), Theory Probab. Math. Stat., 97, 157-170 (2017) · Zbl 1409.60061
[18] Mishura, Y.; Yurchenko-Tytarenko, A., Fractional Cox-Ingersoll-Ross process with non-zero “mean”, Mod. Stoch. Theory Appl., 5, 1, 99-111 (2018) · Zbl 1391.60078 · doi:10.15559/18-vmsta97
[19] Mukeru, S., The zero set of fractional Brownian motion is a Salem set, J. Fourier Anal. Appl., 24, 4, 957-999 (2018) · Zbl 1420.60101 · doi:10.1007/s00041-017-9551-9
[20] Nualart, D.; Ouknine, Y., Regularization of differential equations by fractional noise, Stoch. Process. Appl., 102, 103-116 (2002) · Zbl 1075.60536 · doi:10.1016/S0304-4149(02)00155-2
[21] Yamasaki, K.; Muchnik, L.; Havlin, S.; Bunde, A.; Stanley, H. E., Scaling and memory in volatility return intervals in financial markets, Proc. Natl. Acad. Sci. USA, 102, 26, 9424-9428 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.