×

Fractional Cox-Ingersoll-Ross process with non-zero “mean”. (English) Zbl 1391.60078

Summary: In this paper we define the fractional Cox-Ingersoll-Ross process as \(X_t := Y_t^2 \mathbf{1}_{\{ t < \inf \{s > 0:Y_s = 0\}\}}\), where the process \(Y = \{Y_t,t \geq 0\}\) satisfies the SDE of the form \(dY_t=\frac{1}{2}(\frac{k}{Y_t}-aY_t)dt+\frac{\sigma}{2}dB_t^H\), \(\{B^H_t, t \geq 0\}\) is a fractional Brownian motion with an arbitrary Hurst parameter \(H\in(0,1)\). We prove that \(X_t\) satisfies the stochastic differential equation of the form \(dX_t=(k-aX_t)dt+\sigma\sqrt{X_t}\circ dB_t^H\), where the integral with respect to fractional Brownian motion is considered as the pathwise Stratonovich integral. We also show that for \(k>0\), \(H>1/2\) the process is strictly positive and never hits zero, so that actually \(X_t=Y_t^2\). Finally, we prove that in the case of \(H<1/2\) the probability of not hitting zero on any fixed finite interval by the fractional Cox-Ingersoll-Ross process tends to 1 as \(k\rightarrow\infty\).

MSC:

60G22 Fractional processes, including fractional Brownian motion
60H05 Stochastic integrals
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] Anh, V.; Inoue, A., Financial markets with memory I: dynamic models, Stoch. Anal. Appl., 23, 2, 275-300, (2005) · Zbl 1108.91035
[2] Bollerslev, T.; Mikkelsen, H.O., Modelling and pricing long memory in stock market volatility, J. Econometrics, 73, 1, 151-184, (2005) · Zbl 0960.62560
[3] Cheridito, P.; Kawaguchi, H.; Maejima, M., Fractional Ornstein-Uhlenbeck processes, Electron. J. Probab, 8, 1, 1-14, (2003) · Zbl 1065.60033
[4] Cox, J.C.; Ingersoll, J.E.; Ross, S.A., A re-examination of traditional hypotheses about the term structure of interest rates, J. Finance, 36, 769-799, (1981)
[5] Cox, J.C.; Ingersoll, J.E.; Ross, S.A., An intertemporal general equilibrium model of asset prices, Econometrica, 53, 1, 363-384, (1985) · Zbl 0576.90006
[6] Cox, J.C.; Ingersoll, J.E.; Ross, S.A., A theory of the term structure of interest rates, J. Finance, 53, 2, 385-408, (1985) · Zbl 1274.91447
[7] Ding, Z.; Granger, C.W.; Engle, R.F., A long memory property of stock market returns and a new model, J. Empirical Finance, 1, 1, 83-106, (1993)
[8] Euch, O., Rosenbaum, M.: The characteristic function of rough Heston models. https://arxiv.org/pdf/1609.02108.pdf. Accessed 24 Sep 2017. arXiv: · Zbl 1411.91553
[9] Feller, W., Two singular diffusion problems, Annals of Mathematics, 54, 173-182, (1951) · Zbl 0045.04901
[10] Heston, S.L., A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies, 6, 2, 327-343, (1993) · Zbl 1384.35131
[11] Leonenko, N.; Meerschaert, M.; Sikorskii, A., Correlation structure of fractional Pearson diffusion, Comput. Math. Appl., 66, 5, 737-745, (2013) · Zbl 1381.60112
[12] Leonenko, N.; Meerschaert, M.; Sikorskii, A., Fractional Pearson diffusion, J. Math. Anal. Appl., 403, 2, 532-546, (2013) · Zbl 1297.60057
[13] Marie, N., A generalized Mean-reverting equation and applications, ESAIM Probab. Stat., 18, 799-828, (2014) · Zbl 1308.60074
[14] Melnikov, A.; Mishura, Y.; Shevchenko, G., Stochastic viability and comparison theorems for mixed stochastic differential equations, Methodol. Comput. Appl. Probab., 17, 1, 169-188, (2015) · Zbl 1310.60087
[15] Mishura, Y., Stochastic Calculus for Fractional Brownian Motion and Related Processes, (2008), Springer, Berlin · Zbl 1138.60006
[16] Mishura, Y.; Piterbarg, V.; Ralchenko, K.; Yurchenko-Tytarenko, A., Stochastic representation and pathwise properties of fractional Cox-ingersoll-ross process (ukr), Theory of Probability and Mathematical Statistics, 97, 157-170, (2017) · Zbl 1409.60061
[17] Nualart, D.; Rascanu, A., Differential equations driven by fractional Brownian motion, Collectanea Mathematica, 53, 1, 177-193, (2002)
[18] Yamasaki, K.; Muchnik, L.; Havlin, S.; Bunde, A.; Stanley, H.E., Scaling and memory in volatility return intervals in financial markets, Proc. Natl. Acad. Sci. USA, 102, 26, 9424-9428, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.