×

A different approach to ground state solutions for \(p\)-Laplacian system with critical exponent. (English) Zbl 1454.35120

Summary: In this paper, we give a different method from [Y. Ao and W. Zou, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 181, 222–248 (2019; Zbl 1418.35193)] and [Z. Chen and W. Zou, J. Funct. Anal. 262, No. 7, 3091–3107 (2012; Zbl 1234.35241)] to consider the following nonlinear Schrödinger system with one critical exponent and one subcritical exponent: \[\begin{cases} - \varDelta_p u + \mu | u |^{p - 2} u = | u |^{q - 2} u + \alpha \lambda | u |^{\alpha - 2} u | v |^\beta & \text{in } \mathbb{R}^N, \\ - \varDelta_p v + \nu | v |^{p - 2} v = | v |^{p^\ast - 2} v + \beta \lambda | u |^\alpha | v |^{\beta - 2} v & \text{in } \mathbb{R}^N, \end{cases}\] where \(N \geq \max \{ 3 , p \}\), \(\mu , \nu , \lambda > 0\) , \(\alpha \geq 1\) , \(\beta \geq 1\) , \(2 \leq p < q < p^\ast\) and \(\alpha + \beta = p\) , \(p^\ast = N p / ( N - p )\). By using variational methods, we prove that there exists \(\mu_0 \in ( 0 , 1 )\), such that when \(0 < \mu \leq \mu_0\), the above system has a positive ground state solution; when \(\mu > \mu_0\), there exists \[\lambda_{\mu , \nu} \in \left[ \Big( \frac{ \mu - \mu_0}{ \alpha}\Big)^{\frac{ \alpha}{ p}} \Big( \frac{ \nu}{ \beta}\Big)^{\frac{ \beta}{ p}} ,\Big(\frac{ \mu}{ \alpha} \Big)^{\frac{ \alpha}{ p}} \Big( \frac{ \nu}{ \beta}\Big)^{\frac{ \beta}{ p}}\right)\] such that if \(\lambda > \lambda_{\mu , \nu} \), the above system has a positive ground state solution, if \(\lambda < \lambda_{\mu , \nu} \), the above system has no ground state solution.

MSC:

35J47 Second-order elliptic systems
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
Full Text: DOI

References:

[1] Chen, Z.; Zou, W., On coupled systems of Schrödinger, Adv. Differential Equations, 16, 775-800 (2011) · Zbl 1232.35063
[2] Chen, Z.; Zou, W., On linearly coupled Schrödinger system, Proc. Amer. Math. Soc., 142, 323-333 (2014) · Zbl 1283.35118
[3] Chen, Z.; Zou, W., Ground states for a system of Schrödinger equations with critical exponent, J. Funct. Anal., 262, 3091-3107 (2012) · Zbl 1234.35241
[4] Ao, Y.; Zou, W., Ground states for a class of quasilinear elliptic systems with critical exponent, Nonlinear Anal., 181, 222-248 (2019) · Zbl 1418.35193
[5] Xiang, M.; Zhang, B.; Rădulescu, V., Superlinear Schrödinger-Kirchhoff type problems involving the fractional \(p\)-Laplacian and critical exponent, Adv. Nonlinear Anal., 9, 690-709 (2020) · Zbl 1427.35340
[6] M. Zhen, B. Zhang, The Nehari manifold for fractional \(p\)-Laplacian system involving concave-convex nonlinearities and sign-changing weight functions, Complex Var. Elliptic Equ., In press. · Zbl 1479.35374
[7] Sciunzi, B., Classification of positive \(D^{1 , p} ( \mathbb{R}^N )\) solutions to the critical \(p\)-Laplacian in \(\mathbb{R}^N\), Adv. Math., 291, 12-23 (2016) · Zbl 1344.35061
[8] Vétois, J., A priori estimates and applications to the symmetry of solutions for critical \(p\)-Laplacian, J. Differential Equations, 260, 149-161 (2016) · Zbl 1327.35117
[9] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[10] Willem, M., Minimax Theorems (1996), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 0856.49001
[11] Zhen, M.; He, J.; Xu, H.; Yang, M., Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent, Discrete Contin. Dyn. Syst., 39, 6523-6539 (2019) · Zbl 1425.35034
[12] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and functionals, Proc. Amer. Math. Soc., 88, 486-490 (1983) · Zbl 0526.46037
[13] Han, P., The effect of the domain topology on the number of positive solutions of an elliptic system involving critical sobolev exponents, Houston J. Math., 32, 1241-1257 (2006) · Zbl 1200.35116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.