×

Classification of positive \(\mathcal{D}^{1, p}(\mathbb{R}^N)\)-solutions to the critical \(p\)-Laplace equation in \(\mathbb{R}^N\). (English) Zbl 1344.35061

Let \(N\geq 3\) be an integer, let \(p\in (2,N)\) and let \(p^*:=\frac{Np}{N-p}\) be the critical exponent for the Sobolev embedding. In this interesting paper, the author considers the following critical problem
\[ \begin{aligned} -\Delta_p u = u^{p^*-1} \text{ in }\mathbb{R}^N,\quad u>0\text{ in }\mathbb{R}^N,\\ u\in \mathcal{D}^{1,p}(\mathbb{R}^N):=\{u\in L^{p^*}(\mathbb{R}^N):|\nabla u|\in L^p(\mathbb{R}^N)\}.\end{aligned}\tag{P} \]
and proves that every solution \(u\) to problem (P) is of the form \[ u(x)=U_{\lambda,x_0}(x):=\left[\frac{\lambda^{\frac{1}{p-1}}N^{\frac{1}{p}}\left(\frac{N-p}{p-1}\right)^{\frac{p-1}{p}}} {\lambda^{\frac{p}{p-1}}+|x-x_0|^{\frac{p}{p-1}}}\right]^{\frac{N-p}{p}},\quad x\in \mathbb{R}^N, \] where \(\lambda\in (0,\infty)\) and \(x_0\in \mathbb{R}^N\). In particular, all the solutions to (P) are radial, radially decreasing, and minimizers to \[ \min_{\varphi\in\mathcal{D}^{1,p}(\mathbb{R}^N)\setminus \{0\}}\frac{\int_{\mathbb{R}^N}|\nabla \varphi|^pdx}{(\int_{\mathbb{R}^N}|\varphi|^{p^*})^{\frac{p}{p^*}}}. \] For \(p=2\) and for \(p\in (1,2)\) , this result has been proved, respectively, in [L. A. Caffarelli et al., Commun. Pure Appl. Math. 42, No. 3, 271–297 (1989; Zbl 0702.35085); J. Vétois, J. Differ. Equations 260, No. 1, 149–161 (2016; Zbl 1327.35117)]. Thanks to the result of the present paper, a complete classification of the solutions to (P) is now available for \(p\) in the whole range \((1,N)\). The key ingredients of the proof are a positive lower bound for \(|\nabla u(x)||x|^{-\frac{N-1}{p-1}}\), with \(|x|\geq R_0>0\), and a moving plane technique.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35B33 Critical exponents in context of PDEs
35B06 Symmetries, invariants, etc. in context of PDEs

References:

[1] Bidaut-Véron, M. F., Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arch. Ration. Mech. Anal., 107, 4, 293-324 (1989) · Zbl 0696.35022
[2] Caffarelli, L.; Gidas, B.; Spruck, J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42, 3, 271-297 (1989) · Zbl 0702.35085
[3] Chen, W. X.; Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 62, 3, 615-622 (1991) · Zbl 0768.35025
[4] Damascelli, L.; Merchán, S.; Montoro, L.; Sciunzi, B., Radial symmetry and applications for a problem involving the \(- \Delta_p(\cdot)\) operator and critical nonlinearity in \(R^N\), Adv. Math., 256, 313-335 (2014) · Zbl 1316.35135
[5] Damascelli, L.; Pacella, F.; Ramaswamy, M., Symmetry of ground states of \(p\)-Laplace equations via the moving plane method, Arch. Ration. Mech. Anal., 148, 291-308 (1999) · Zbl 0937.35050
[6] Damascelli, L.; Ramaswamy, M., Symmetry of \(C^1\) solutions of \(p\)-Laplace equations in \(R^N\), Adv. Nonlinear Stud., 1, 1, 40-64 (2001) · Zbl 0998.35016
[7] Damascelli, L.; Sciunzi, B., Regularity, monotonicity and symmetry of positive solutions of \(m\)-Laplace equations, J. Differential Equations, 206, 2, 483-515 (2004) · Zbl 1108.35069
[8] Damascelli, L.; Sciunzi, B., Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of \(m\)-Laplace equations, Calc. Var. Partial Differential Equations, 25, 2, 139-159 (2006) · Zbl 1331.35130
[9] Di Benedetto, E., \(C^{1 + \alpha}\) local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7, 8, 827-850 (1983) · Zbl 0539.35027
[10] Gidas, B.; Ni, W. M.; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 3, 209-243 (1979) · Zbl 0425.35020
[11] Gidas, B.; Ni, W. M.; Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in \(R^N\), Math. Anal. Appl., Part A, Adv. Math. Suppl. Stud., 7A, 369-403 (1981) · Zbl 0469.35052
[12] Guedda, M.; Veron, L., Local and global properties of solutions of quasilinear elliptic equations, J. Differential Equations, 76, 1, 159-189 (1988) · Zbl 0661.35029
[13] Kuusi, T.; Mingione, G., Universal potential estimates, J. Funct. Anal., 262, 4205-4269 (2012) · Zbl 1252.35097
[14] Lieberman, G. M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12, 11, 1203-1219 (1988) · Zbl 0675.35042
[15] Moser, J., A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13, 457-468 (1960) · Zbl 0111.09301
[16] Pucci, P.; Serrin, J., The Maximum Principle (2007), Birkhäuser: Birkhäuser Boston · Zbl 1134.35001
[17] Serrin, J., Local behavior of solutions of quasi-linear equations, Acta Math., 111, 247-302 (1964) · Zbl 0128.09101
[18] Serrin, J., A symmetry problem in potential theory, Arch. Ration. Mech. Anal., 43, 4, 304-318 (1971) · Zbl 0222.31007
[19] Serrin, J.; Zou, H., Symmetry of ground states of quasilinear elliptic equations, Arch. Ration. Mech. Anal., 148, 4, 265-290 (1999) · Zbl 0940.35079
[20] Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110, 353-372 (1976) · Zbl 0353.46018
[21] Teixeira, E., Regularity for quasilinear equations on degenerate singular sets, Math. Ann., 358, 1-2, 241-256 (2014) · Zbl 1286.35119
[22] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51, 1, 126-150 (1984) · Zbl 0488.35017
[23] Trudinger, N. S., Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Sc. Norm. Super. Pisa (3), 22, 265-274 (1968) · Zbl 0159.23801
[24] Vázquez, J. L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12, 3, 191-202 (1984) · Zbl 0561.35003
[25] Vétois, J., A priori estimates and application to the symmetry of solutions for critical \(p\)-Laplace equations, J. Differential Equations, 260, 1, 149-161 (2016) · Zbl 1327.35117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.