×

Subspace arrangements, graph rigidity and derandomization through submodular optimization. (English) Zbl 1452.68089

Bárány, Imre (ed.) et al., Building bridges II. Mathematics of László Lovász. Conference in celebration of László Lovász’ 70th birthday, Budapest, Hungary, July 2–6, 2018. Berlin: Springer. Bolyai Soc. Math. Stud. 28, 377-415 (2019).
Summary: This paper presents a deterministic, strongly polynomial time algorithm for computing the matrix rank for a class of symbolic matrices (whose entries are polynomials over a field). This class was introduced, in a different language, by L. Lovász [in: Proceedings of the 6th British combinatorics conference. London, etc: Academic Press. 45–86 (1977; Zbl 0361.05027)] in his study of flats in matroids, and proved a duality theorem putting this problem in \(\mathrm{NP}\cap\mathrm{coNP}\). As such, our result is another demonstration where “good characterization” in the sense of Edmonds leads to an efficient algorithm. In a different paper L. Lovász [in: Fundamentals of computation theory – FCT ’79. Proceedings of the conference on algebraic, arithmetic, and categorial methods in computation theory held in Berlin/Wendisch-Rietz (GDR). Berlin: Akademie-Verlag. 565–574 (1979; Zbl 0446.68036)] proved that all such symbolic rank problems have efficient probabilistic algorithms, namely are in BPP. As such, our algorithm may be interpreted as a derandomization result, in the long sequence special cases of the PIT (Polynomial Identity Testing) problem. Finally, L. Lovász and Y. Yemini [SIAM J. Algebraic Discrete Methods 3, 91–98 (1982; Zbl 0497.05025)] showed how the same problem generalizes the graph rigidity problem in two dimensions. As such, our algorithm may be seen as a generalization of the well-known deterministic algorithm for the latter problem. There are two somewhat unusual technical features in this paper. The first is the translation of Lovász’ flats problem into a symbolic rank one. The second is the use of submodular optimization for derandomization. We hope that the tools developed for both will be useful for related problems, in particular for better understanding of graph rigidity in higher dimensions.
For the entire collection see [Zbl 1443.05002].

MSC:

68Q25 Analysis of algorithms and problem complexity
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
15A15 Determinants, permanents, traces, other special matrix functions
15B33 Matrices over special rings (quaternions, finite fields, etc.)
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
68W05 Nonnumerical algorithms
68W20 Randomized algorithms

References:

[1] Agrawal, M., Saha, C., Saptharishi, R., and Saxena, N.: Jacobian hits circuits: Hitting sets, lower bounds for depth-d occur-k formulas and depth-3 transcendence degree-k circuits. SIAM J. Comput. 45.4, 1533-1562 (2016). · Zbl 1350.68292 · doi:10.1137/130910725
[2] Asimow, L., and Roth, B.: The rigidity of graphs. Trans. Amer. Math. Soc. 245, 279-289 (1978) · Zbl 0392.05026 · doi:10.1090/S0002-9947-1978-0511410-9
[3] Brooksbank, P. M., and Luks, E. M.: Testing isomorphism of modules. J. Algebra 320.11, 4020-4029 (2008) · Zbl 1172.16022 · doi:10.1016/j.jalgebra.2008.07.014
[4] Chistov, A., Ivanyos, G., and Karpinski, M.: Polynomial time algorithms for modules over finite dimensional algebras. In Proceedings of the 1997 ACM International Symposium on Symbolic and Algebraic Computation (ISSAC) (1997), 68-74. · Zbl 0918.16001
[5] Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Natl. Bur. Stand. 71, 241-245 (1967) · Zbl 0178.03002 · doi:10.6028/jres.071B.033
[6] Fenner, S., Gurjar, R., and Thierauf, T.: Bipartite perfect matching is in quasi-NC. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC) (2016), 754-763. · Zbl 1373.68267
[7] Frank, A., and Tardos, É. : Generalized polymatroids and submodular flows. Mathematicl Programming 42, 489-563 (1988) · Zbl 0665.90073 · doi:10.1007/BF01589418
[8] Garg, A., Gurvits, L., Oliveira, R., and Wigderson, A.: Operator scaling: theory and applications. In arXiv:1511.03730v3 · Zbl 1432.68617
[9] Geelen, J. F.: Maximum rank matrix completion. Linear Algebra Appl. 288, 211-217 (1999) · Zbl 0933.15026 · doi:10.1016/S0024-3795(98)10210-0
[10] Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21, 65-84 (1992) · Zbl 0756.05047 · doi:10.1137/0221008
[11] Ivanyos, G., Karpinski, M., and Saxena, N.: Deterministic polynomial time algorithms for matrix completion problems. SIAM J. Comput. 39.8, 3736-3751 (2010) · Zbl 1209.68269 · doi:10.1137/090781231
[12] Jordan, T.: Combinatorial rigidity: Graphs and matroids in the theory of rigid frameworks. MSJ Memoirs 34, 33-112 (2016) · Zbl 1348.52018
[13] Kabanets, V., and Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13, 1-46 (2004) · Zbl 1089.68042 · doi:10.1007/s00037-004-0182-6
[14] Laman, G.: On graphs and rigidity of plane skeletal structures. J. Engrg. Math. 4, 333-338 (1970) · Zbl 0213.51903 · doi:10.1007/BF01534980
[15] Liu, H., and Regan, K.: Improved construction for universality of determinant and permanent. Inf. Process. Lett. 100.6, 233-237 (2006) · Zbl 1185.68016 · doi:10.1016/j.ipl.2006.05.017
[16] Lovász, L.: Flats in matroids and geometric graphs. In Combinatorial Surveys, Proc. 6th British Combinatorial Conf., P. Cameron, Ed., Academic Press, New York, 1977, pp. 45-89. · Zbl 0361.05027
[17] Lovász, L.: On determinants, matchings, and random algorithms. In International Symposium on Fundamentals of Computation Theory, 565-574 (1979) · Zbl 0446.68036
[18] Lovász, L.: Matroid matching and some applications. J. Combin. Theory Ser. B 28.2, 208-236 (1980) · Zbl 0444.05031 · doi:10.1016/0095-8956(80)90066-0
[19] Lovász, L., and Plummer, M. D.: Matching Theory, American Mathematical Soc., Providence, Rhode Island, 2009. · Zbl 1175.05002
[20] Lovász, L., and Yemini, Y.: On generic rigidity in the plane. SIAM J. Alg. Disc. Math. 3, 91-98 (1982) · Zbl 0497.05025 · doi:10.1137/0603009
[21] Meshulam, R.: On the maximal rank in a subspace of matrices. Q. J. Math. 36.2, 225-229 (1985) · Zbl 0565.15006 · doi:10.1093/qmath/36.2.225
[22] Pollaczek-Geiringer, H.: Über die Gliederung ebener Fachwerke. Z. Angew. Math. Mech. (ZAMM) 7: 1, 58-72 (1927). · JFM 53.0743.02
[23] Pollaczek-Geiringer, H.: âŁœZur Gliederungstheorie räumlicher Fachwerke. Z. Angew. Math. Mech. (ZAMM) 12.6, 369-376 (1932). · JFM 58.1265.09
[24] Saxena, N.: Progress on polynomial identity testing-II. In Perspectives in Computational Complexity, Springer International Publishing, 2014, 131-146. · Zbl 1345.68182
[25] Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combinat. Theory, Ser. B 80.2, 346-355 (2000) · Zbl 1052.90067
[26] Shpilka, A., and Yehudayoff, A.: Arithmetic circuits: A survey of recent results and open questions. Found. Trends Theor. Comput. Sci. 5, 207-388 (2010) · Zbl 1205.68175 · doi:10.1561/0400000039
[27] Sitharam, M., St. John, A., and Sidman, J. (editors), Handbook of Geometric Constraint Systems Principles, CRC press, Taylor & Francis group (2019). · Zbl 1397.05005
[28] Tanigawa, S.: Generic Rigidity Matroids with Dilworth Truncations. SIAM J. Discrete Math. 26.3, 1412-1439 (2012) · Zbl 1259.52015 · doi:10.1137/100819473
[29] Tanigawa, S.: Matroids of gain graphs in applied discrete geometry. Trans. Amer. Math. Soc. 367, 8597-8641 (2015) · Zbl 1325.05048 · doi:10.1090/tran/6401
[30] Valiant, L. · Zbl 0415.68008 · doi:10.1016/0304-3975(79)90044-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.