×

Characterizing the generalized lambda distribution by L-moments. (English) Zbl 1452.62181

Summary: The generalized lambda distribution (GLD) is a flexible four parameter distribution with many practical applications. L-moments of the GLD can be expressed in closed form and are good alternatives for the central moments. The L-moments of the GLD up to an arbitrary order are presented, and a study of L-skewness and L-kurtosis that can be achieved by the GLD is provided. The boundaries of L-skewness and L-kurtosis are derived analytically for the symmetric GLD and calculated numerically for the GLD in general. Additionally, the contours of L-skewness and L-kurtosis are presented as functions of the GLD parameters. It is found that with an exception of the smallest values of L-kurtosis, the GLD covers all possible pairs of L-skewness and L-kurtosis and often there are two or more distributions that share the same L-skewness and the same L-kurtosis. Examples that demonstrate situations where there are four GLD members with the same L-skewness and the same L-kurtosis are presented. The estimation of the GLD parameters is studied in a simulation example where method of L-moments compares favorably to more complicated estimation methods. The results increase the knowledge on the distributions that belong to the GLD family and can be utilized in model selection and estimation.

MSC:

62E10 Characterization and structure theory of statistical distributions
62F10 Point estimation
62-08 Computational methods for problems pertaining to statistics

Software:

LMOMENTS; R; gld; PBSmapping

References:

[1] Asquith, W. H., L-moments and TL-moments of the generalized lambda distribution, Comput. Statist. Data Anal., 51, 4484-4496 (2007) · Zbl 1162.62312
[2] Bergevin, R.J., 1993. An analysis of the generalized lambda distribution. Master’s Thesis, Air Force Institute of Technology, available from \(\langle;\) http://stinet.dtic.mil \(\rangle;\); Bergevin, R.J., 1993. An analysis of the generalized lambda distribution. Master’s Thesis, Air Force Institute of Technology, available from \(\langle;\) http://stinet.dtic.mil \(\rangle;\)
[3] Bigerelle, M.; Najjar, D.; Fournier, B.; Rupin, N.; Iost, A., Application of lambda distributions and bootstrap analysis to the prediction of fatigue lifetime and confidence intervals, Internat. J. Fatigue, 28, 223-236 (2005) · Zbl 1194.74338
[4] Corrado, C. J., Option pricing based on the generalized lambda distribution, J. Future Markets, 21, 213-236 (2001)
[5] Elamir, E. A.; Seheult, A. H., Trimmed L-moments, Comput. Statist. Data Anal., 43, 299-314 (2003) · Zbl 1220.62019
[6] Fournier, B.; Rupin, N.; Bigerellle, M.; Najjar, D.; Iost, A.; Wilcox, R., Estimating the parameters of a generalized lambda distributions, Comput. Statist. Data Anal., 51, 2813-2835 (2007) · Zbl 1161.62324
[7] Headrick, T. C.; Mugdadib, A., On simulating multivariate non-normal distributions from the generalized lambda distribution, Comput. Statist. Data Anal., 50, 3343-3353 (2006) · Zbl 1445.62006
[8] Hosking, J., L-moments: analysis and estimation of distributions using linear combinations of order statistics, J. Roy. Statist. Soc. B, 52, 1, 105-124 (1990) · Zbl 0703.62018
[9] Hosking, J. R.M., On the characterization of distributions by their L-moments, J. Statist. Plann. Inference, 136, 1, 193-198 (2006) · Zbl 1079.62017
[10] Jones, M. C., On some expressions for variance, covariance, skewness and L-moments, J. Stat. Plann. Inference, 126, 97-106 (2004) · Zbl 1057.62012
[11] Karian, Z. A.; Dudewicz, E. J., Fitting the generalized lambda distribution to data: a method based on percentiles, Comm. Statist. Simulation Comput., 28, 3, 793-819 (1999) · Zbl 0949.62013
[12] Karian, Z. A.; Dudewicz, E. J., Fitting Statistical Distributions: The Generalized Lambda Distribution and Generalized Bootstrap Methods (2000), Chapman & Hall, CRC Press: Chapman & Hall, CRC Press London, Boca Raton, FL · Zbl 1058.62500
[13] Karian, Z. A.; Dudewicz, E. J., Comparison of GLD fitting methods: superiority of percentile fits to moments in \(L^2\) norm, J. Iranian Statist. Soc., 2, 2, 171-187 (2003) · Zbl 1490.62057
[14] Karian, Z. A.; Dudewicz, E. J.; McDonald, P., The extended generalized lambda distribution system for fitting distributions to data: history, completion of theory, tables, applications, the “final word” on moment fits, Comm. Statist. Simulation Comput., 25, 3, 611-642 (1996) · Zbl 0909.62007
[15] Karvanen, J., 2003. Generation of correlated non-Gaussian random variables from independent components. In: Proceedings of Fourth International Symposium on Independent Component Analysis and Blind Signal Separation, ICA2003, pp. 769-774.; Karvanen, J., 2003. Generation of correlated non-Gaussian random variables from independent components. In: Proceedings of Fourth International Symposium on Independent Component Analysis and Blind Signal Separation, ICA2003, pp. 769-774.
[16] Karvanen, J., Estimation of quantile mixtures via L-moments and trimmed L-moments, Comput. Statist. Data Anal., 51, 2, 947-959 (2006) · Zbl 1157.62344
[17] Karvanen, J.; Eriksson, J.; Koivunen, V., Adaptive score functions for maximum likelihood ICA, J. VLSI Signal Process., 32, 83-92 (2002) · Zbl 1009.94514
[18] King, R., 2006. gld: basic functions for the generalised (Tukey) lambda distribution. R package version 1.8.1.; King, R., 2006. gld: basic functions for the generalised (Tukey) lambda distribution. R package version 1.8.1.
[19] King, R.; MacGillivray, H., A startship estimation method for the generalized lambda distributions, Australian and New Zealand J. Statist., 41, 3, 353-374 (1999) · Zbl 1055.62513
[20] Lakhany, A.; Mausser, H., Estimating parameters of generalized lambda distribution, Algo Res. Quart., 3, 3, 47-58 (2000)
[21] Lampasi, D. A.; Di Nicola, F.; Podestà, L., The generalized lambda distribution for the expression of measurement uncertainty, (Proceedings of IMTC-2005 IEEE Instrumentation and Measurement Technology Conference (2005)), 2118-2133
[22] Nelder, J. A.; Mead, R., A simplex algorithm for function minimization, Comput. J., 7, 308-313 (1965) · Zbl 0229.65053
[23] Öztürk, A.; Dale, R., Least squares estimation of the parameters of the generalized lambda distribution, Technometrics, 27, 1, 81-84 (1985)
[24] Pal, S., 2005. Evaluation of non-normal process capability indices using generalized lambda distributions. Quality Eng. 77-85.; Pal, S., 2005. Evaluation of non-normal process capability indices using generalized lambda distributions. Quality Eng. 77-85.
[25] R Development Core Team, 2006. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL \(\langle;\) http://www.R-project.org \(\rangle;\); R Development Core Team, 2006. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL \(\langle;\) http://www.R-project.org \(\rangle;\)
[26] Ramberg, J. S.; Schmeiser, B. W., An approximate method for generating asymmetric random variables, Comm. ACM, 17, 78-82 (1974) · Zbl 0273.65004
[27] Schnute, J., Boers, N., Haigh, R., et al., 2006. PBSmapping: PBS mapping 2. R package version 2.09.; Schnute, J., Boers, N., Haigh, R., et al., 2006. PBSmapping: PBS mapping 2. R package version 2.09.
[28] Su, S., Numerical maximum log likelihood estimation for generalized lambda distributions, Comput. Statist. Data Anal., 51, 3983-3998 (2007) · Zbl 1161.62329
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.