×

Psyquandles, singular knots and pseudoknots. (English) Zbl 1452.57010

Biquandles are algebraic structures with axioms motivated by the oriented Reidemeister moves of diagrams of knots and links. Biquandles have been used to define invariants of classical and virtual oriented knots and links and the results of the paper under review are motivated by effectiveness of these structures in distinguishing oriented knots and links. Singular knots and links are 4-valent spatial graphs considered up to rigid vertex isotopy, where a vertex can be thought of as the result of two strands of a knot or link getting glued together in a fixed position. A singular knot or link with exactly one singular crossing is a 2-bouquet graph. Pseudoknots are knots whose diagrams consist of usual crossings and precrossings (classical crossings where one cannot tell which strand goes on top).
The authors generalize the notion of biquandles to psyquandles and use them to define invariants of oriented singular links and pseudolinks. In addition to psyquandle counting invariants, they also introduce Alexander psyquandles and corresponding invariants such as Alexander psyquandle polynomials and Alexander-Gröbner psyquandle invariants of oriented singular knots and links. The authors define a generalization of the Alexander polynomial for oriented singular links and pseudolinks which they refer to as the Jablan polynomial and compute the invariant for all pseudoknots with up to five crossings and all 2-bouquet graphs with up to six classical crossings.

MSC:

57K12 Generalized knots (virtual knots, welded knots, quandles, etc.)
57M15 Relations of low-dimensional topology with graph theory

References:

[1] K. Bataineh, M. Elhamdadi, M. Hajij and W. Youmans, Generating sets of reidemeister moves of oriented singular links and quandles, arXiv:1702.01150 (2017). · Zbl 1414.57004 · doi:10.1142/S0218216518500645
[2] J. S. Carter, M. Elhamdadi and M. Saito, Homology theory for the set-theoretic Yang-Baxter equation and knot invariants from generalizations of quandles, Fund. Math. 184 (2004), 31-54. · Zbl 1067.57006 · doi:10.4064/fm184-0-3
[3] A. S. Crans, A. Henrich and S. Nelson, Polynomial knot and link invariants from the virtual biquandle, J. Knot Theory Ramifications 22(4) (2013), 15. · Zbl 1270.57040 · doi:10.1142/S021821651340004X
[4] M. Elhamdadi and S. Nelson, Quandles-an introduction to the algebra of knots, volume 74 of Student Mathematical Library, American Mathematical Society, Providence, RI, 2015. · Zbl 1332.57007
[5] R. Fenn, M. Jordan-Santana and L. Kauffman, Biquandles and virtual links, Topology Appl. 145(1-3) (2004), 157-175. · Zbl 1063.57006 · doi:10.1016/j.topol.2004.06.008
[6] R. Fenn, C. Rourke and B. Sanderson, Trunks and classifying spaces, Appl. Categ. Structures 3(4) (1995), 321-356. · Zbl 0853.55021 · doi:10.1007/BF00872903
[7] M. Goussarov, M. Polyak and O. Viro, Finite-type invariants of classical and virtual knots, Topology 39(5) (2000), 1045-1068. · Zbl 1006.57005 · doi:10.1016/S0040-9383(99)00054-3
[8] R. Hanaki, Pseudo diagrams of knots, links and spatial graphs, Osaka J. Math. 47(3) (2010), 863-883. · Zbl 1219.57006
[9] A. Henrich, R. Hoberg, S. Jablan, L. Johnson, E. Minten and L. Radović, The theory of pseudoknots, J. Knot Theory Ramifications 22(7) (2013), 21. · Zbl 1271.57037 · doi:10.1142/S0218216513500326
[10] A. Henrich and S. Jablan, On the coloring of pseudoknots, J. Knot Theory Ramifications, 23(12) (2014), 22. · Zbl 1419.57025 · doi:10.1142/S0218216514500618
[11] A. K. Henrich, S. Jablan and I. Johnson, The signed weighted resolution set is not a complete pseudoknot invariant, J. Knot Theory Ramifications 25(9) (2016), 10. · Zbl 1353.57016 · doi:10.1142/S0218216516410078
[12] L. H. Kauffman and D. Radford, Bi-oriented quantum algebras, and a generalized Alexander polynomial for virtual links, Diagrammatic morphisms and applications (San Francisco, CA, 2000), volume 318 of Contemp. Math., pages 113-140. Amer. Math. Soc., Providence, RI, 2003. · Zbl 1031.57009
[13] W. B. R. Lickorish, An introduction to knot theory, volume 175 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1997. · Zbl 0886.57001
[14] S. Nelson, M. E. Orrison and V. Rivera, Quantum enhancements and biquandle brackets, J. Knot Theory Ramifications 26(5) (2017), 24. · Zbl 1396.57023 · doi:10.1142/S0218216517500341
[15] S. Nelson and J. L. Rische, On bilinear biquandles, Colloq. Math. 112(2) (2008), 279-289. · Zbl 1186.57011 · doi:10.4064/cm112-2-5
[16] S. Nelson and J. Vo, Matrices and finite biquandles, Homology Homotopy Appl. 8(2) (2006), 51-73. · Zbl 1111.57009 · doi:10.4310/HHA.2006.v8.n2.a3
[17] S. Nelson and E. Watterberg, Birack dynamical cocycles and homomorphism invariants, J. Algebra Appl. 12(8) (2013), 14. · Zbl 1310.57017 · doi:10.1142/S0219498813500497
[18] N. Oyamaguchi, Enumeration of spatial 2-bouquet graphs up to flat vertex isotopy, Topology Appl. 196(part B) (2015), 805-814. · Zbl 1330.57003 · doi:10.1016/j.topol.2015.05.049
[19] J. Sawollek, On Alexander-Conway polynomials for virtual knots and links. (1999).
[20] V. A. Vassiliev, Cohomology of knot spaces, In Theory of singularities and its applications, volume 1 of Adv. Soviet Math., pages 23-69. Amer. Math. Soc., Providence, RI, 1990. · Zbl 0727.57008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.