×

A review of definitions of fractional derivatives and other operators. (English) Zbl 1452.26008

Summary: Given the increasing number of proposals and definitions of operators in the scope of fractional calculus, it is important to introduce a systematic classification. Nonetheless, many of the definitions that emerged in the literature can not be considered as fractional derivatives. We analyze a list of expressions to have a general overview of the concept of fractional (integrals) derivatives. Moreover, some formulae that do not involve the term fractional, are also included due to their particular interest in the area.

MSC:

26A33 Fractional derivatives and integrals
26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems
26-02 Research exposition (monographs, survey articles) pertaining to real functions
Full Text: DOI

References:

[1] Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279, 57-66 (2015) · Zbl 1304.26004
[2] Agarwal, P.; Choi, J.; Paris, R. B., Extended Riemann-Liouville fractional derivative operator and its applications, J. Nonlinear Sci. Appl., 8, 451-466 (2015) · Zbl 1329.26010
[3] Akkurt, A.; Yildirim, M. E.; Hyldirim, H., New generalized fractional derivative and integral (2017)
[4] Almeida, R., A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44, 460-481 (2017) · Zbl 1465.26005
[5] Almeida, R., Caputo-Hadamard fractional derivative of variable order, Numer. Funct. Anal. Optim., 38, 1-19 (2017) · Zbl 1364.26006
[6] Almeida, R.; Guzowska, M.; Odzijewicz, T., A remark on local fractional calculus and ordinary derivatives, Open Math., 14, 1122-1124 (2016) · Zbl 1355.26005
[7] Almeida, R.; Malinowska, A. B.; Odzijewicz, T., Fractional differential equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlinear Dyn., 11, Article 061017 pp. (2016)
[8] Atangana, A., On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation, Appl. Math. Comput., 273, 948-956 (2016) · Zbl 1410.35272
[9] Atangana, A.; Baleanu, D., New fractional derivative without nonlocal and nonsingular kernel: theory and application to heat transfer model, Therm. Sci., 20, 763-769 (2016)
[10] Atangana, A.; Goufo, E. F.D., Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng., 2014 (2014) · Zbl 1407.34005
[11] Atangana, A.; Noutchie, S. C.O., Model of break-bone fever via beta-derivatives, BioMed Res. Int., 2014 (2014)
[12] Bayour, B.; Torres, D. F.M., Existence of solution to a local fractional nonlinear differential equation, J. Comput. Appl. Math., 312, 127-133 (2017) · Zbl 1354.34012
[13] Camargo, R. F.; Capelas de Oliveira, E., Fractional Calculus (2015), Editora Livraria da Física: Editora Livraria da Física São Paulo, (in Portuguese)
[14] Campos, L. M.C., On a concept of derivative of complex order with applications to special functions, IMA J. Appl. Math., 33, 109-133 (1984) · Zbl 0565.30034
[15] Capelas de Oliveira, E.; Tenreiro Machado, J. A., A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014, 1-6 (2014) · Zbl 1407.26013
[16] Caputo, M., Linear model of dissipation whose \(q\) is almost frequency independent-II, Geophys. J. Int., 13, 529-539 (1967)
[17] Caputo, M., Elasticità e Dissipazione (1969), Zanichelli: Zanichelli Bologna
[18] Caputo, M., Mean fractional-order-derivatives differential equations and filters, Ann. Univ. Ferrara, 41, 73-84 (1995) · Zbl 0882.34007
[19] Caputo, M.; Fabrizio, M., A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1, 73-85 (2015)
[20] Caputo, M.; Fabrizio, M., Applications of new time and spatial fractional derivatives with exponential kernels, Prog. Fract. Differ. Appl., 2, 1-11 (2016)
[21] Chen, Y. W., Hölder continuity and initial value problems of mixed type differential equations, Comment. Math. Helv., 33, 296-321 (1959) · Zbl 0111.29206
[22] Chen, W., Fractional and fractal derivatives modeling of turbulence (2005), IAPCM Report
[23] Chen, W., Time-space fabric underlying anomalous diffusion, Chaos Solitons Fractals, 28, 923-929 (2006) · Zbl 1098.60078
[24] Chung, W. S., Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math., 290, 150-158 (2015) · Zbl 1336.70033
[25] Dorrego, G. A.; Cerutti, R. A., The \(k\)-fractional Hilfer derivative, Int. J. Math. Anal., 7, 543-550 (2013) · Zbl 1283.26005
[26] Dugowson, S., Les différentielles métaphysiques histoire et philosophie de la généralisation de l’ordre de dérivation (1994), Université Paris Nord, These docteur
[27] Dzhrbashyan, M. M.; Nersesyan, A. B., Fractional derivatives and the Cauchy problem for fractional differential equation, Izv. Akad. Nauk Armyan. SSR, 3, 3-29 (1968) · Zbl 0165.40801
[28] Eroglu, B. B.I.; Avci, D.; Ozdemir, N., Optimal control problem for a conformable fractional heat conduction equation, Acta Phys. Pol. A, 132, 658-662 (2017)
[29] Garra, R.; Gorenflo, R.; Polito, F.; Tomovski, Z., Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput., 242, 576-589 (2014) · Zbl 1334.26008
[30] Gerasimov, A., A generalization of linear laws of deformation and its applications to problems of internal friction, Prikl. Mat. Meh., 12, 251-260 (1948), (in Russian) · Zbl 0032.12901
[31] Giusti, A., A comment on some new definitions of fractional derivative (2018) · Zbl 1398.28001
[32] Grünwald, A. K., Derivationen und deren Anwendung, Z. Angew. Math. Phys., 12, 441-480 (1867)
[33] Hadamard, J., Essai sur l’étude des fonctions, données par leur développement de Taylor, J. Pure Appl. Math., 4, 101-186 (1892) · JFM 24.0359.01
[34] Hilfer, R., Applications of Fractional Calculus in Physics (2000), World Scientific Publishing: World Scientific Publishing New York · Zbl 0998.26002
[35] Jarad, F.; Abdelljawad, T.; Baleanu, D., On Riesz-Caputo formulation for sequential fractional variational principles, Abstr. Appl. Anal., 2012 ID890395 (2012) · Zbl 1242.49047
[36] Jumarie, G., Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51, 1367-1376 (2006) · Zbl 1137.65001
[37] Jumarie, G., Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Appl. Math. Lett., 22, 378-385 (2009) · Zbl 1171.26305
[38] Kassim, M. D.; Furati, K. M.; Tatar, N. E., On a differential equation involving Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., 2012 (2012), 17 pages · Zbl 1255.34007
[39] Katugampola, U. N., Correction to “What is a fractional derivative?” by Ortigueira and Machado [Journal of Computational Physics, Volume 293, 15 July 2015, Pages 4-13. Special issue on Fractional PDEs], J. Comput. Phys., 321, 1255-1257 (2016) · Zbl 1349.26014
[40] Katugampola, U. N., A new fractional derivative with classical properties, J. Am. Math. Soc. (2014)
[41] Katugampola, U. N., New approach to a generalized fractional integral, Appl. Math. Comput., 218, 860-865 (2011) · Zbl 1231.26008
[42] Khalil, R.; Horani, M. A.; Yousef, A.; Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264, 65-70 (2014) · Zbl 1297.26013
[43] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 207 (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003
[44] Kiryakova, V., General Fractional Calculus and Applications (1994), Longman and J. Wiley: Longman and J. Wiley New York · Zbl 0882.26003
[45] Kiryakova, V., A brief story about the operators of the generalized fractional calculus, Fract. Calc. Appl. Anal., 11, 203-220 (2008) · Zbl 1153.26003
[46] Kolwankar, K. M., Local fractional calculus: a review, in: Varsha Daftardar-Gejji (Ed.), Fractional Calculus: Theory and Applications (Narosa, 2013)
[47] Kolwankar, K. M.; Gangal, A. D., Fractional differentiability of nowhere differentiable functions and dimensions, Chaos, 6, 505-513 (1996) · Zbl 1055.26504
[48] Letnikov, A. V., Theory of differentiation with an arbitrary index, Mat. Sb., 3, 1-66 (1868), (in Russian)
[49] Li, C.; Dao, X.; Guo, P., Fractional derivatives in complex plane, Nonlinear Anal., 71, 1857-1869 (2009) · Zbl 1173.26305
[50] Liouville, J., Mémoire: Sur le calcul des différentielles à indices quelconques, J. Éc. Polytech., 13, 71 (1832)
[51] Liu, C. S., Counterexamples on Jumarie’s two basic fractional calculus formulae, Commun. Nonlinear Sci. Numer. Simul., 22, 92-94 (2015) · Zbl 1331.26010
[52] Liu, C. S., Counterexamples on Jumarie’s three basic fractional calculus formulae for non-differentiable continuous functions, Chaos Solitons Fractals, 109, 219-222 (2018) · Zbl 1390.26011
[53] Lorenzo, C. F.; Hartley, T. T., Variable order and distributed order fractional operators, Nonlinear Dyn., 29, 57-98 (2002) · Zbl 1018.93007
[54] Losada, J.; Nieto, J. J., Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2, 87-92 (2015)
[55] Machado, J. A.T.; Kiryakova, V.; Mainardi, F., A poster about the old history of fractional calculus, Fract. Calc. Appl. Anal., 13, 447-454 (2010) · Zbl 1222.26015
[56] Machado, J. A.T.; Kiryakova, V.; Mainardi, F., A poster about the recent history of fractional calculus, Fract. Calc. Appl. Anal., 13, 329-334 (2010) · Zbl 1221.26013
[57] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity (2010), Imperial College Press: Imperial College Press London · Zbl 1210.26004
[58] Mainardi, F.; Luchko, Y.; Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4, 153-192 (2001) · Zbl 1054.35156
[59] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), John Wiley and Sons, Inc.: John Wiley and Sons, Inc. New York · Zbl 0789.26002
[60] Morales-Delgado, V. F.; Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Taneko-Hernández, M. A., Fractional conformable derivatives of Liouville-Caputo type with low-fractionality, Physica A: Stat. Mech. Appl., 503, 424-438 (2018) · Zbl 1514.26003
[61] Nieto, J. J.; Ouahab, A.; Venktesh, V., Implicit fractional differential equations via the Liouville-Caputo derivative, Mathematics, 2015, 398-411 (2015) · Zbl 1322.34012
[62] Nishimoto, K., Fractional Calculus (1989), Descartes Press Co.: Descartes Press Co. Koriyama · Zbl 0798.26005
[63] Oliveira, D. S.; Capelas de Oliveira, E., Hilfer-Katugampola fractional derivative, Comput. Appl. Math., 1, 19 (2017) · Zbl 1401.26014
[64] Oliveira, D. S.; Capelas de Oliveira, E., On a Caputo-type fractional derivative, Adv. Pure Appl. Math. (2018) · Zbl 1401.26014
[65] Oliveira, D. S.; Capelas de Oliveira, E., On the generalized \((k, \rho)\)-fractional derivative, Prog. Fract. Differ. Appl., 4, 133-145 (2018)
[66] Ortigueira, M. D., Fractional central differences and derivatives, J. Vib. Control, 14, 1255-1266 (2008) · Zbl 1229.26015
[67] Ortigueira, M. D., Riesz potential operators and inverse via fractional centred derivatives, Int. J. Math. Math. Sci., 2006, 1-12 (2006) · Zbl 1122.26007
[68] Ortigueira, M. D., A coherent approach to non-integer order derivatives, Signal Process., 86, 2505-2515 (2006) · Zbl 1172.26304
[69] Ortigueira, M. D., The fractional quantum derivative and its integral representation, Commun. Nonlinear Sci. Numer. Simul., 15, 956-962 (2010) · Zbl 1221.26011
[70] Ortigueira, M. D.; Tenreiro Machado, J. A., What is a fractional derivative?, J. Comput. Phys., 293, 4-13 (2015) · Zbl 1349.26016
[71] Ortigueira, M. D.; Tenreiro Machado, J. A., A critical analysis of the Caputo-Fabrizio operator, Commun. Nonlinear Sci. Numer. Simul., 59, 608-611 (2018) · Zbl 1510.26004
[72] Ortigueira, M. D.; Tenreiro Machado, J. A., Fractional derivatives: the perspective of system theory, Mathematics, 7, 150 (2019)
[73] Ortigueira, M. D.; Valério, D.; Machado, J. A.T., Variable order fractional systems, Commun. Nonlinear Sci. Numer. Simul., 71, 231-243 (2019) · Zbl 1464.26007
[74] Panchal, S. K.; Khandagale, A. D.; Dole, P. V., \(k\)-Hilfer-Prabhakar fractional derivatives and its applications, Indian J. Math., 59, 367-383 (2017) · Zbl 1387.26015
[75] Prabhakar, T. R., A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19, 7-15 (1971) · Zbl 0221.45003
[76] (Ross, B., Fractional Calculus and Its Applications: Proceedings of the International Conference. Fractional Calculus and Its Applications: Proceedings of the International Conference, New Haven, June 1974 (1974), Springer-Verlag: Springer-Verlag New York)
[77] Ross, B., A brief history and exposition of the fundamental theory of fractional calculus, Lect. Notes Math., 457, 1-36 (1975) · Zbl 0303.26004
[78] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives - Theory and Applications (1993), Gordon and Breach: Gordon and Breach Amsterdam · Zbl 0818.26003
[79] Sonin, N. Ya., On differentiation with arbitrary index, Mosc. Mat. Sb., 6, 1-38 (1869)
[80] Sugumarana, H.; Ibrahimb, R. W.; Kanagarajana, K., On \(ψ\)-Hilfer fractional differential equation with complex order, Univers. J. Math. Appl., 1, 33-38 (2018)
[81] Sun, H.; Hao, X.; Zang, Y.; Baleanu, D., Relaxation and diffusion models with non-singular kernel, Physica A, 468, 590-596 (2017) · Zbl 1400.82141
[82] Tarasov, V. E., No violation of the Leibniz rule. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 18, 2945-2948 (2013) · Zbl 1329.26015
[83] Tarasov, V. E., No locality. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul. (2018)
[84] Tarasov, V. E.; Tarasova, S. S., Fractional and integer derivatives with continuously distributed lag, Commun. Nonlinear Sci. Numer. Simul., 70, 125-169 (2019) · Zbl 1464.26008
[85] Tenreiro Machado, J. A.; Kiryakova, V., The chronicles of fractional calculus, Fract. Calc. Appl. Anal., 20, 307-336 (2017) · Zbl 1364.26002
[86] Teodoro, G. S., Derivadas Fracionárias: Tipos e Critérios de Validade (2019), Imecc-Unicamp: Imecc-Unicamp Campinas, Tese de Doutorado
[87] Teodoro, G. S.; Oliveira, D. S.; Capelas de Oliveira, E., On fractional derivatives, Rev. Bras. Ensino Fis., 40, 1-26 (2018), (in Portuguese)
[88] Valério, D.; Tenreiro Machado, J. A.; Kiryakova, V., Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 17, 552-578 (2014) · Zbl 1305.26008
[89] Valério, D.; Trujillo, J. J.; Rivero, M.; Tenreiro Machado, J.; Baleanu, D., Fractional calculus: a survey of useful formulas, Eur. Phys. J. Spec. Top., 222, 1827-1846 (2013)
[90] Vanterler, J.; Sousa, C.; Capelas de Oliveira, E., On the \(ψ\)-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60, 72-91 (2018) · Zbl 1470.26015
[91] Vanterler, J.; Sousa, C.; Capelas de Oliveira, E., On the local \(M\)-derivative, Prog. Fract. Differ. Appl., 4, 479-492 (2018)
[92] Vanterler, J.; Sousa, C.; Capelas de Oliveira, E., A truncated \(V\)-fractional derivative in \(R^n\), Turk. J. Math. Comput. Sci., 8, 49-64 (2018)
[93] Vanterler, J.; Sousa, C.; Capelas de Oliveira, E., Truncated \(V\)-fractional Taylor’s formula with applications, Trends Appl. Comp. Math., 19, 1-21 (2018) · Zbl 1398.34023
[94] da Vanterler, J.; Sousa, C.; Capelas de Oliveira, E., Mittag-Leffler function and the truncated \(V\)-fractional derivative, Mediterr. J. Math., 14, 244 (2017) · Zbl 1381.26007
[95] da Vanterler, J.; Sousa, C.; Capelas de Oliveira, E., A new truncated \(M\)-fractional derivative type unifying some fractional derivative type with classical properties, Int. J. Anal. Appl., 16, 83-96 (2018) · Zbl 1399.26013
[96] Weyl, H., Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung, Zür. Naturf. Ges., 62, 296-302 (1917) · JFM 46.0437.01
[97] Yang, X. J., New rheological problems involving general fractional derivatives within nonsingular power-law kernel, Proc. Rom. Acad., Ser. A, 19, 45-52 (2018)
[98] Yang, X. J.; Srivastava, H. M.; Tenreiro Machado, J. A., A new fractional derivative without singular kernel. Application to the modelling of the steady heat flow, Therm. Sci., 20, 753-756 (2016)
[99] Yang, X. J.; Tenreiro Machado, J. A.; Baleanu, D., Anomalous diffusion models with general fractional derivatives within the kernels of the extended Mittag-Leffler type functions, Rom. Rep. Phys., 69, S1-S9 (2017)
[100] Zaky, M. A.; Tenreiro Machado, J. A., On the formulation and numerical simulation of distributed-order fractional optimal control problems, Commun. Nonlinear Sci. Numer. Simul., 52, 177-189 (2017) · Zbl 1510.49018
[101] Zhao, D.; Luo, M., General conformable fractional derivative and its physical interpretation, Calcolo, 54, 903-917 (2017) · Zbl 1375.26020
[102] Zhao, D.; Luo, M., Representations of acting processes and memory effects: general fractional derivatives and its application to theory of heat conduction with finite wave speeds, Appl. Math. Comput., 346, 531-544 (2019) · Zbl 1429.80008
[103] Zheng, G. H.; Wei, T., Two regularization methods for solving a Riesz-Feller space-fractional packward diffusion problems, Inverse Probl., 26, Article 115017 pp. (2016) · Zbl 1206.65226
[104] Zulfeqarr, F.; Ujlayan, A.; Ahuja, P., A new fractional derivative and its fractional integral with some applications (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.