×

Pseudo-plateau bursting and mixed-mode oscillations in a model of developing inner hair cells. (English) Zbl 1451.92109

Summary: Inner hair cells (IHCs) are excitable sensory cells in the inner ear that encode acoustic information. Before the onset of hearing IHCs fire calcium-based action potentials that trigger transmitter release onto developing spiral ganglion neurones. There is accumulating experimental evidence that these spontaneous firing patterns are associated with maturation of the IHC synapses and hence involved in the development of hearing. The dynamics organising the IHCs’ electrical activity are therefore of interest.
Building on our previous modelling work we propose a three-dimensional, reduced IHC model and carry out non-dimensionalisation. We show that there is a significant range of parameter values for which the dynamics of the reduced (three-dimensional) model map well onto the dynamics observed in the original biophysical (four-dimensional) IHC model. By estimating the typical time scales of the variables in the reduced IHC model we demonstrate that this model could be characterised by two fast and one slow or one fast and two slow variables depending on biophysically relevant parameters that control the dynamics. Specifically, we investigate how changes in the conductance of the voltage-gated calcium channels as well as the parameter corresponding to the fraction of free cytosolic calcium concentration in the model affect the oscillatory model behaviour leading to transition from pseudo-plateau bursting to mixed-mode oscillations. Hence, using fast-slow analysis we are able to further our understanding of this model and reveal a path in the parameter space connecting pseudo-plateau bursting and mixed-mode oscillations by varying a single parameter in the model.

MSC:

92C37 Cell biology

References:

[1] Marcotti, W.; Johnson, S. L.; Holley, M. C.; Kros, C., Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells, J Physiol, 548, 383-400 (2003)
[2] Zachary, S.; Nowak, N.; Vyas, P.; Bonanni, L.; Fuchs, P. A., Voltage-gated calcium influx modifies cholinergic inhibition of inner hair cells in the immature rat cochlea, J Neurosci, 38, 25, 5677-5687 (2018)
[3] Eckrich, T.; Blum, K.; Milenkovic, I.; Engel, J., Fast Ca2+ transients of inner hair cells arise coupled and uncoupled to Ca2+ waves of inner supporting cells in the developing mouse cochlea, Front Mol Neurosci, 11 (2018)
[4] Kros, C. J.; Ruppersberg, J. P.; Rüsch, A., Expression of a potassium current in inner hair cells during development of hearing in mice, Nature, 394, 6690, 281 (1998)
[5] Marcotti, W.; Johnson, S. L.; Rüsch, A.; Kros, C., Sodium and calcium currents shape action potentials in immature mouse inner hair cells, J Physiol, 552, 743-761 (2003)
[6] Beutner, D.; Moser, T., The presynaptic function of mouse cochlear inner hair cells during development of hearing, J Neurosci, 21, 13, 4593-4599 (2001)
[7] Johnson, S. L.; Marcotti, W.; Kros, C. J., Increase in efficiency and reduction in Ca2+ dependence of exocytosis during development of mouse inner hair cells, J Physiol, 563, 1, 177-191 (2005)
[8] Johnson, S. L.; Eckrich, T.; Kuhn, S.; Zampini, V.; Franz, C.; Ranatunga, K. M., Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells, Nat Neurosci, 14, 6, 711 (2011)
[9] Hodgkin, A. L.; Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J Physiol, 117, 4, 500-544 (1952)
[10] Chay, T. R.; Keizer, J., Minimal model for membrane oscillations in the pancreatic beta-cell., Biophys J, 42, 2, 181-190 (1983)
[11] Stern, J. V.; Osinga, H. M.; LeBeau, A.; Sherman, A., Resetting behavior in a model of bursting in secretory pituitary cells: distinguishing plateaus from pseudo-plateaus, Bull Math Biol, 70, 1, 68-88 (2008) · Zbl 1281.92021
[12] Tsaneva-Atanasova, K.; Osinga, H. M.; Rieβ, T.; Sherman, A., Full system bifurcation analysis of endocrine bursting models, J Rheor Biol, 264, 4, 1133-1146 (2010) · Zbl 1406.92122
[13] Osinga, H.; Tsaneva-Atanasova, K., Dynamics of plateau bursting depending on the location of its equilibrium, J Neuroendocrinol, 22, 12, 1301-1314 (2010)
[14] Teka, W.; Tsaneva-Atanasova, K.; Bertram, R.; Tabak, J., From plateau to pseudo-plateau bursting: making the transition, Bull Math Biol, 73, 6, 1292-1311 (2011) · Zbl 1215.92012
[15] Teka, W.; Tabak, J.; Vo, T.; Wechselberger, M.; Bertram, R., The dynamics underlying pseudo-plateau bursting in a pituitary cell model, J Math Neurosci, 1, 1, 12 (2011) · Zbl 1259.37063
[16] Szalai, R.; Tsaneva-Atanasova, K.; Homer, M. E.; Champneys, A. R.; Kennedy, H. J.; Cooper, N. P., Nonlinear models of development, amplification and compression in the mammalian cochlea, Philos Trans R Soc Lond A, 369, 1954, 4183-4204 (2011) · Zbl 1239.92025
[17] Iosub, R.; Avitabile, D.; Grant, L.; Tsaneva-Atanasova, K.; Kennedy, H. J., Calcium-induced calcium release during action potential firing in developing inner hair cells, Biophys J, 108, 5, 1003-1012 (2015)
[18] Clarke, S. G.; Scarnati, M. S.; Paradiso, K. G., Neurotransmitter release can be stabilized by a mechanism that prevents voltage changes near the end of action potentials from affecting calcium currents, J. Neurosci., 36, 45, 11559-11572 (2016)
[19] Johnson, S. L.; Marcotti, W., Biophysical properties of Cav1. 3 calcium channels in gerbil inner hair cells, J Physiol, 586, 4, 1029-1042 (2008)
[20] Grant, L.; Fuchs, P., Calcium- and calmodulin-dependent inactivation of calcium channels in inner hair cells of the rat cochlea, J. Neurophysiol., 99, 5, 2183-2193 (2008)
[21] Marcotti, W.; Johnson, S. L.; Kros, C., A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells, J Physiol, 560, 691-708 (2004)
[22] Zampini, V.; Johnson, S. L.; Franz, C.; Lawrence, N. D.; Münkner, S.; Engel, J., Elementary properties of Ca(v)1.3 Ca(2+) channels expressed in mouse cochlear inner hair cells, J Physiol, 588, 187-199 (2010)
[23] Ferrario, A.; Merrison-Hort, R.; Soffe, S. R.; Li, W.-C.; Borisyuk, R., Bifurcations of limit cycles in a reduced model of the xenopus tadpole central pattern generator, J Math Neurosci, 8, 1, 10 (2018) · Zbl 1405.92043
[24] Sanes, D. H.; Reh, T. A.; Harris, W. A., Development of the nervous system (2005), Elsevier
[25] Brandt, A.; Striessnig, J.; Moser, T., Cav1. 3 channels are essential for development and presynaptic activity of cochlear inner hair cells, J. Neurosci., 23, 34, 10832-10840 (2003)
[26] Bertram, R.; Rubin, J. E., Multi-timescale systems and fast-slow analysis, Math Biosci, 287, 105-121 (2017) · Zbl 1377.92035
[27] Rinzel, J., Bursting oscillations in an excitable membrane model, Ordinary and partial differential equations, 304-316 (1985), Springer · Zbl 0584.92003
[28] Desroches, M.; Guckenheimer, J.; Krauskopf, B.; Kuehn, C.; Osinga, H. M.; Wechselberger, M., Mixed-mode oscillations with multiple time scales, SIAM Rev, 54, 2, 211-288 (2012) · Zbl 1250.34001
[29] Murray, J. D., Mathematical biology: I. An introduction (Pt. 1), Interdisciplinary applied mathematics, vol. 17 (2002), Springer · Zbl 1006.92001
[30] Kuznetsov, Y. A.; Meijer, H. G.; van Veen, L., The fold-flip bifurcation, Int J Bifur Chaos, 14, 07, 2253-2282 (2004) · Zbl 1077.37515
[31] Kuznetsov, Y., Elements of applied bifurcation theory, Applied mathematical sciences (2004), Springer New York · Zbl 1082.37002
[32] Bertram, R.; Tabak, J.; Teka, W.; Vo, T.; Wechselberger, M.; Kirk, V., Mathematical analysis of complex cellular activity (2015), Springer · Zbl 1325.92005
[33] Keener, J.; Sneyd, J., Mathematical physiology: I: cellular physiology, Interdisciplinary applied mathematics (2009), Springer · Zbl 1273.92017
[34] Baer, S. M.; Erneux, T.; Rinzel, J., The slow passage through a Hopf bifurcation: delay, memory effects, and resonance, SIAM J Appl Math, 49, 1, 55-71 (1989) · Zbl 0683.34039
[35] Izhikevich, E. M., Dynamical systems in neuroscience (2007), MIT Press
[36] Wegenkittl, R.; Loffelmann, H.; Groller, E., Visualizing the behaviour of higher dimensional dynamical systems, Visualization’97., Proceedings, 119-125 (1997), IEEE
[37] Nan, P.; Wang, Y.; Kirk, V.; Rubin, J. E., Understanding and distinguishing three-time-scale oscillations: case study in a coupled Morris-Lecar system, SIAM J Appl Dyn Syst, 14, 3, 1518-1557 (2015) · Zbl 1329.34094
[38] Vo, T.; Bertram, R.; Wechselberger, M., Multiple geometric viewpoints of mixed mode dynamics associated with pseudo-plateau bursting, SIAM J Appl Dyn Syst, 12, 2, 789-830 (2013) · Zbl 1295.37022
[39] Kuehn, C., Multiple time scale dynamics, Applied mathematical sciences (2015), Springer International Publishing · Zbl 1335.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.