×

Modeling regulation mechanisms in the immune system. (English) Zbl 1451.92097

Summary: We develop a mathematical framework for modeling regulatory mechanisms in the immune system. The model describes dynamics of key components of the immune network within two compartments: lymph node and tissue. We demonstrate using numerical simulations that our system can eliminate virus-infected cells, which are characterized by a tendency to increase without control (in absence of an immune response), while tolerating normal cells, which are characterized by a tendency to approach a stable equilibrium population. We experiment with different combinations of T cell reactivities that lead to effective systems and conclude that slightly self-reactive T cells can exist within the immune system and are controlled by regulatory cells.
We observe that CD8+ T cell dynamics has two phases. In the first phase, CD8+ cells remain sequestered within the lymph node during a period of proliferation. In the second phase, the CD8+ population emigrates to the tissue and destroys its target population. We also conclude that a self-tolerant system must have a mechanism of central tolerance to ensure that self-reactive T cells are not too self-reactive. Furthermore, the effectiveness of a system depends on a balance between the reactivities of the effector and regulatory T cell populations, where the effectors are slightly more reactive than the regulatory cells.

MSC:

92C32 Pathology, pathophysiology
Full Text: DOI

References:

[1] Antia, R.; Bergstrom, C. T.; Pilyugin, S. S.; Kaech, S. M.; Ahmed, R., Models of CD8+ responses: 1. What is the antigen-independent proliferation program, J. Theor. Biol., 221, 4, 585-598 (2003) · Zbl 1464.92037
[2] Burroughs, N. J.; de Oliveira, B. M.P. M.; Pinto, A. A., Regulatory T cell adjustment of quorum growth thresholds and the control of local immune responses, J. Theor. Biol., 241, 134-141 (2006) · Zbl 1447.92086
[3] Casal, A.; Sumen, C.; Reddy, T. E.; Alber, M. S.; Lee, P. P., Agent-based modeling of the context dependency in T cell recognition, J. Theor. Biol., 236, 4, 376-391 (2005) · Zbl 1442.92028
[4] Catron, D. M.; Itano, A. A.; Pape, K. A.; Mueller, D. L.; Jenkins, M. K., Visualizing the first 50h of the primary immune response to a soluble antigen, Immunity, 21, 3, 341-347 (2004)
[5] Chang, C. C.; Ciubotariu, R.; Manavalan, J. S.; Yuan, J.; Colovai, A. I.; Piazza, F.; Lederman, S.; Colonna, M.; Cortesini, R.; Dalla-Favera, R.; Suciu-Foca, N., Tolerization of dendritic cells by T (S) cells: the crucial role of inhibitory receptors ILT3 and ILT4, Nat. Immunol., 3, 3, 237-243 (2002)
[6] De Boer, R. J.; Perelson, A. S., Size and connectivity as emergent properties of a developing immune network, J. Theor. Biol., 149, 3, 381-424 (1990)
[7] De Boer, R. J.; Kevrekidis, I. G.; Perelson, A. S., A simple idiotypic network with complex dynamics, Chem. Eng. Sci., 45, 2375-2382 (1990)
[8] De Boer, R. J.; Homann, D.; Perelson, A. S., Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection, J. Immunol., 171, 8, 3928-3935 (2003)
[9] De Conde, R.; Kim, P. S.; Levy, D.; Lee, P. P., Post-transplantation dynamics of the immune response to chronic myelogenous leukemia, J. Theor. Biol., 236, 1, 39-59 (2005) · Zbl 1442.92029
[10] Deeths, M. J.; Kedl, R. M.; Mescher, M. F., CD8+ T cells become nonresponsive (anergic) following activation in the presence of costimulation, J. Immunol., 163, 1, 102-110 (1999)
[11] Duvall, C. P.; Perry, S., The use of 51-chromium in the study of leukocyte kinetics in chronic myelocytic leukemia, J. Lab. Clin. Med., 71, 4, 614-628 (1968)
[12] Haase, A. T., Population biology of HIV-1 infection: virial and CD4+ T cell demographics and dynamics in lymphatic tissues, Annu. Rev. Immunol., 17, 625-656 (1999)
[13] Holenbeck, A. E.; Lerman, M. A.; Naji, A.; Caton, A. J., Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide, Nat. Immunol., 2, 4, 301-306 (2001)
[14] Janeway, C. A.; Travers, P.; Walport, M.; Shlomchik, M. J., Immunobiology: the Immune system in Health and Disease (2005), Garland Science Publishing: Garland Science Publishing New York, NY
[15] Jerne, N. K., Towards a network theory of the immune system, Ann. Immunol. (Paris), 125C, 1-2, 373-389 (1974)
[16] Jiang, H.; Chess, L., An integrated view of suppressor T cell subsets in immunoregulation, J. Clin. Invest., 114, 9, 1198-1208 (2004)
[17] Kasaian, M. T.; Leite-Morris, K. A.; Biron, C. A., The role of CD4+ cells in sustaining lymphocyte proliferation during lymphocytic choriomeningitis virus infection, J. Immunol., 146, 6, 1955-1963 (1991)
[18] Kubach, J.; Becker, C.; Schmitt, E.; Steinbrink, K.; Huter, E.; Tuettenberg, A.; Jonuleit, H., Dendritic cells: sentinels of immunity and tolerance, Int. J. Hematol., 81, 3, 197-203 (2005)
[19] Lee, P.P., unpublished data.
[20] León, K.; Peréz, R.; Lage, A.; Carneiro, J., Modelling T-cell-mediated suppression dependent on interactions in multicellular conjugates, J. Theor. Biol., 207, 231-254 (2000)
[21] León, K.; Peréz, R.; Lage, A.; Carneiro, J., Three-cell interactions in T cell-mediated suppression? A mathematical analysis of its quantitative implications, J. Immunol., 166, 5356-5365 (2001)
[22] León, K.; Lage, A.; Carneiro, J., Tolerance and immunity in a mathematical model of T-cell mediated suppression, J. Theor. Biol., 225, 107-126 (2003) · Zbl 1464.92057
[23] León, K.; Faro, J.; Lage, A.; Carneiro, J., Inverse correlation between the incidences of autoimmune disease and infection predicted by a model of T cell mediated tolerance, J. Autoimmunity, 22, 31-42 (2004)
[24] Luzyanina, T.; Engelborghs, K.; Ehl, S.; Klenerman, P.; Bocharov, G., Low level viral persistence after infection with LCMV: a quantitative insight through numerical bifurcation analysis, Math. Biosci., 173, 1, 1-23 (2004) · Zbl 0988.92014
[25] McKay, M. D.; Conover, W. J.; Beckman, R. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 239-245 (1979) · Zbl 0415.62011
[26] Mercado R., Vijh, S., Allen, S.E., Kerksiek, K., Pilip, I.M., Pamer, E.G., 2000. Early programming of T cell populations responding to bacterial infection. J. Immunol. 165(12), 6833-6839.
[27] Mohri, H., Perelson, A.S., Tung, K., Ribeiro, R.M., Ramratnam, B., Markowitz, M., Kost, R., Hurley, A., Weinberger, L., Cesar, D., Hellerstein, M.K., Ho, D.D., 2001. Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J. Exp. Med. 194(9), 1277-1287.
[28] Pacholczyk, R.; Kraj, P.; Ignatowicz, L., Peptide specificity of thymic selection of CD4+CD25+ T cells, J. Immunol., 168, 2, 613-620 (2001)
[29] Sakaguchi, S.; Sakaguchi, N.; Asano, M.; Itoh, M.; Toda, M., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor a-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases, J. Immunol., 155, 3, 1151-1164 (1995)
[30] Snedecor, S. J., Comparison of three kinetic models of HIV-1 Infection: implications for optimization of treatment, J. Theor. Biol., 221, 4, 519-541 (2003) · Zbl 1464.92072
[31] Stephens, L. A.; Mottet, C.; Mason, D.; Powrie, F., Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro, Eur. J. Immunol., 31, 4, 1247-1254 (2001)
[32] Taams, L. S.; Vukmanovic-Stejic, M.; Smith, J.; Dunne, P. J.; Fletcher, J. M.; Plunkett, F. J.; Ebeling, S. B.; Lombardi, G.; Rustin, M. H.; Bijlsma, J. W.; Lafeber, F. P.; Salmon, M.; Akbar, A. N., Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells, Eur. J. Immunol., 32, 6, 1621-1630 (2002)
[33] Tham, E. L.; Mescher, M. F., Signaling alterations in activation-induced nonresponsive CD8 T cells, J. Immunol., 167, 4, 2040-2048 (2001)
[34] Tham, E. L.; Mescher, M. F., The poststimulation program of CD4 versus CD8 T cells (death versus activation-induced nonresponsiveness), J. Immunol., 169, 4, 1822-1828 (2002)
[35] Tham, E. L.; Shrikant, P.; Mescher, M. E., Activation-induced nonresponsiveness: a Th-dependent regulatory checkpoint in the CTL response, J. Immunol., 168, 3, 1190-1197 (2002)
[36] Trimble, L. A.; Lieberman, J., Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3 zeta, the signalling chain of the T-cell receptor complex, Blood, 91, 2, 585-594 (1998)
[37] Uhlin, M.; Masucci, M. G.; Levitsky, V., Regulation of lck degradation and refractory state in CD8+ cytotoxic T lymphocytes, Proc. Natl. Acad. Sci. USA, 102, 26, 9264-9269 (2005)
[38] Varela, F. J.; Stewart, J., Dynamics of a class of immune networks: global stability of idiotype interactions, J. Theor. Biol., 144, 1, 93-101 (1990)
[39] Walker, M. R.; Carson, B. D.; Nepom, G. T.; Ziegler, S. F.; Buckner, J. H., De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells, Proc. Natl. Acad. Sci. USA, 102, 11, 4103-4108 (2005)
[40] Weisbuch, G.; DeBoer, R. J.; Perelson, A. S., Localized memories in idiotypic networks, J. Theor. Biol., 146, 4, 483-499 (1990)
[41] Wilson, N. S.; El-Sukkari, D.; Belz, G. T.; Smith, C. M.; Steptoe, R. J.; Heath, W. R.; Shortman, K.; Villadangos, J. A., Most lymphoid organ dendritic cell types are phenotypically and functionally immature, Blood, 102, 6, 2187-2194 (2003)
[42] Wilson, N. S.; El-Sukkari, D.; Villadangos, J. A., Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis, Blood, 103, 6, 2187-2195 (2004)
[43] Wong, P.; Pamer, G. E., Antigen-independent CD8 T cell proliferation, J. Immunol., 166, 10, 5864-5868 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.