×

Tolerance and immunity in a mathematical model of T-cell mediated suppression. (English) Zbl 1464.92057

Summary: Regulatory CD4+CD25+ T cells play a major role in natural tolerance to body components and therefore are relevant to understand the self-non-self discrimination by the immune system. The most pressing theoretical question, regarding the fact that these regulatory cells perform their function through linked recognition of the APCs, is how this “non-specific” mechanism permits a proper balance between tolerance and immunity that is compatible with an effective self-non-self discrimination. To tackle this issue, we develop a numerical simulation, which extends a previous mathematical model of T-cell-mediated suppression to include the thymic generation and the peripheral dynamics of many T cell clones. This simulation can mimic the capacity of the immune system to establish natural tolerance to self-antigens and reliably mount immune responses to foreign antigens. Natural tolerance is based on ubiquitous and constitutive self-antigens, which select and sustain clones of specific regulatory cells. Immune responses to foreign antigens are only achieved if they displace the self-antigens from the APCs, leading to a loss of the regulatory cells, and/or if the foreign antigen introduction entails a sharp increase in the total number of APCs. Meaningful behavior is obtained even if differentiation of regulatory cells in the thymus is antigen non-specific, but requires that a minimum number of new T cells enter the periphery per unit of time, and that the repertoire is selected so that anti-self-affinities are within a proper interval. We conclude that positive selection is required to generate a sufficiently high frequency of self-antigen specific regulatory cells that reliably mediate natural tolerance. Negative selection is required to avoid the emergence at the periphery of very high affinity anti-self-regulatory cells that will make the tolerant state so robust that it could no be broken by the introduction of a foreign antigen. This result highlights the importance of repertoire selection in dominant tolerance proposing a novel role for the processes of positive and negative selection within this framework.

MSC:

92C30 Physiology (general)
92C32 Pathology, pathophysiology
92-10 Mathematical modeling or simulation for problems pertaining to biology
Full Text: DOI

References:

[1] Annacker, O.; Pimenta-Araujo, R.; Burlen-Defranoux, O.; Bandeira, A., On the ontogeny and physiology of regulatory T cells, Immunol. Rev., 182, 5-17 (2001)
[2] Annacker, O.; Pimenta-Araujo, R.; Burlen-Defranoux, O.; Barbosa, T. C.; Cumano, A.; Bandeira, A., CD25+ CD4+ T Cells regulate the expansion of peripheral CD4 T cells through the production of IL-10, J. Immunol., 166, 3008-3018 (2001)
[3] Benoist, C.; Mathis, D., Autoimmunity provoked by infectionhow good is the case for T cell epitope mimicry?, Nat. Immunol., 2, 797-801 (2001)
[4] Bromley, S. K.; Burack, W. R.; Johnson, K. G.; Somersalo, K.; Sims, T. N.; Sumen, C.; Davis, M. M.; Shaw, A. S.; Allen, P. M.; Dustin, M. L., The immunological synapse, Annu. Rev. Immunol., 19, 375-396 (2001)
[5] Carneiro, J.; Coutinho, A.; Faro, J.; Stewart, J., A model of the immune network with B-T cell co-operation. I—prototypical structures and dynamics (published erratum appears in J. Theor. Biol. 1996 Nov 7;183(1):119), J. Theor. Biol., 182, 513-529 (1996)
[6] Carneiro, J.; Coutinho, A.; Stewart, J., A model of the immune network with B-T cell co-operation. II—The simulation of oncogenesis, J. Theor. Biol., 182, 531-547 (1996)
[7] Cederbom, L.; Hall, H.; Ivars, F., CD4+ CD25+ Regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells, Eur. J. Immunol., 30, 1538-1543 (2000)
[8] Cobbold, S. P.; Adams, E.; Marshall, S. E.; Davies, J. D.; Waldmann, H., Mechanisms of peripheral tolerance and suppression induced by monoclonal antibodies to CD4 and CD8, Immunol. Rev., 149, 5-33 (1996)
[9] Coutinho, A.; Hori, S.; Carvalho, T.; Caramalho, I.; Demengeot, J., Regulatory T cellsthe physiology of autoreactivity in dominant tolerance and quality control of immune responses, Immunol. Rev., 182, 89-98 (2001)
[10] Davies, J. D.; Leong, L. Y.; Mellor, A.; Cobbold, S. P.; Waldmann, H., T cell suppression in transplantation tolerance through linked recognition, J. Immunol., 156, 3602-3607 (1996)
[11] Davies, J. D.; O’Connor, E.; Hall, D.; Krahl, T.; Trotter, J.; Sarvetnick, N., CD4+ CD45RB low-density cells from untreated mice prevent acute allograft rejection, J. Immunol., 163, 5353-5357 (1999)
[12] Davis, M. M.; Bjorkman, P. J., T-cell antigen receptor genes and T-cell recognition, Nature, 334, 395-402 (1988)
[13] de Boer, R. J.; Perelson, A. S., Size and connectivity as emergent properties of a developing immune network, J. Theor. Biol., 149, 381-424 (1991)
[14] De Boer, R. J.; Perelson, A. S., Competitive control of the self-renewing T cell repertoire, Int. Immunol., 9, 779-790 (1997)
[15] Demotz, S.; Grey, H. M.; Sette, A., The minimal number of class II MHC-antigen complexes needed for t cell activation, Science., 249, 1028-1030 (1990)
[16] Garza, K. M.; Agersborg, S. S.; Baker, E.; Tung, K. S., Persistence of physiological self antigen is required for the regulation of self tolerance, J. Immunol., 164, 3982-3989 (2000)
[17] Hara, M.; Kingsley, C. I.; Niimi, M.; Read, S.; Turvey, S. E.; Bushell, A. R.; Morris, P. J.; Powrie, F.; Wood, K. J., IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo, J. Immunol., 166, 3789-3796 (2001)
[18] Harding, C. V.; Unanue, E. R., Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation, Nature, 346, 574-576 (1990)
[19] Heath, V. L.; Saoudi, A.; Seddon, B. P.; Moore, N. C.; Fowell, D. J.; Mason, D. W., The role of the thymus in the control of autoimmunity, J. Autoimmun., 9, 241-246 (1996)
[20] Hori, S.; Haury, M.; Coutinho, A.; Demengeot, J., Specificity requirements for selection and effector functions of CD25+4+ regulatory T cells in anti-myelin basic protein T cell receptor transgenic mice, Proc. Natl. Acad. Sci. USA, 99, 8213-8218 (2002)
[21] Itoh, M.; Takahashi, T.; Sakaguchi, N.; Kuniyasu, Y.; Shimizu, J.; Otsuka, F.; Sakaguchi, S., Thymus and autoimmunityproduction of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance, J. Immunol., 162, 5317-5326 (1999)
[22] Iwashiro, M.; Messer, R. J.; Peterson, K. E.; Stromnes, I. M.; Sugie, T.; Hasenkrug, K. J., Immunosuppression by CD4+ regulatory T cells induced by chronic retroviral infection, Proc. Natl. Acad. Sci. USA, 98, 9226-9230 (2001)
[23] Jordan, M. S.; Riley, M. P.; von Boehmer, H.; Caton, A. J., Anergy and suppression regulate CD4(+) T cell responses to a self peptide, Eur. J. Immunol., 30, 136-144 (2000)
[24] Jordan, M. S.; Boesteanu, A.; Reed, A. J.; Petrone, A. L.; Holenbeck, A. E.; Lerman, M. A.; Naji, A.; Caton, A. J., Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide, Nat. Immunol., 2, 301-306 (2001)
[25] Khan, S.; van den Broek, M.; Schwarz, K.; de Giuli, R.; Diener, P. A.; Groettrup, M., Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver, J. Immunol., 167, 6859-6868 (2001)
[26] Le Douarin, N.; Corbel, C.; Bandeira, A.; Thomas-Vaslin, V.; Modigliani, Y.; Coutinho, A.; Salaun, J., Evidence for a thymus-dependent form of tolerance that is not based on elimination or anergy of reactive T cells, Immunol. Rev., 149, 35-53 (1996)
[27] Leon, K.; Perez, R.; Lage, A.; Carneiro, J., Modelling T-cell-mediated suppression dependent on interactions in multicellular conjugates, J. Theor. Biol., 207, 231-254 (2000)
[28] Leon, K.; Perez, R.; Lage, A.; Carneiro, J., Three-cell interactions in T cell-mediated suppression? A mathematical analysis of its quantitative implications, J. Immunol., 166, 5356-5365 (2001)
[29] Leon, K., 2002. A quantitative approach to dominant tolerance. Ph.D. Thesis, University of Porto, Portugal, November 2002.; Leon, K., 2002. A quantitative approach to dominant tolerance. Ph.D. Thesis, University of Porto, Portugal, November 2002.
[30] Mackall, C. L.; Gress, R. E., Thymic aging and T-cell regeneration, Immunol. Rev., 160, 91-102 (1997)
[31] McMahan, C. J.; Fink, P. J., Receptor revision in peripheral T cells creates a diverse V beta repertoire, J. Immunol., 165, 6902-6907 (2000)
[32] Medawar, P. B.W., The induction of tolerance by skin homeograft on newborn rats, Immunology., 1, 27-35 (1958)
[33] Modigliani, Y.; Bandeira, A.; Coutinho, A., A model for developmentally acquired thymus-dependent tolerance to central and peripheral antigens, Immunol. Rev., 149, 120-155 (1996)
[34] Powrie, F.; Mauze, S.; Coffman, R. L., CD4+T cells in the regulation of inflammatory responses in the intestine, Res. Immunol., 148, 576-581 (1997)
[35] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in C (1997), Cambridge University Press: Cambridge University Press New York
[36] Read, S.; Mauze, S.; Asseman, C.; Bean, A.; Coffman, R.; Powrie, F., CD38+ CD45RB(low) CD4+ T cellsa population of T cells with immune regulatory activities in vitro, Eur. J. Immunol., 28, 3435-3447 (1998)
[37] Sakaguchi, S.; Fukuma, K.; Kuribayashi, K.; Masuda, T., Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease, J. Exp. Med., 161, 72-87 (1985)
[38] Sakaguchi, N.; Miyai, K.; Sakaguchi, S., Ionizing radiation and autoimmunity. Induction of autoimmune disease in mice by high dose fractionated total lymphoid irradiation and its prevention by inoculating normal T cells, J. Immunol., 152, 2586-2595 (1994)
[39] Sakaguchi, S.; Toda, M.; Asano, M.; Itoh, M.; Morse, S. S.; Sakaguchi, N., T cell-mediated maintenance of natural self-toleranceits breakdown as a possible cause of various autoimmune diseases, J. Autoimmun., 9, 211-220 (1996)
[40] Sakaguchi, S.; Sakaguchi, N.; Shimizu, J.; Yamazaki, S.; Sakihama, T.; Itoh, M.; Kuniyasu, Y.; Nomura, T.; Toda, M.; Takahashi, T., Immunologic tolerance maintained by CD25+ CD4+ regulatory T cellstheir common role in controlling autoimmunity, tumor immunity, and transplantation tolerance, Immunol. Rev., 182, 18-32 (2001)
[41] Seddon, B.; Mason, D., Peripheral autoantigen induces regulatory T cells that prevent autoimmunity, J. Exp. Med., 189, 877-882 (1999)
[42] Shevach, E. M., Regulatory T cells in autoimmmunity*, Annu. Rev. Immunol., 18, 423-449 (2000)
[43] Singh, B.; Read, S.; Asseman, C.; Malmstrom, V.; Mottet, C.; Stephens, L. A.; Stepankova, R.; Tlaskalova, H.; Powrie, F., Control of intestinal inflammation by regulatory T cells, Immunol. Rev., 182, 190-200 (2001)
[44] Sousa, J.; Carneiro, J., A mathematical analysis of TCR serial triggering and down-regulation, Eur. J. Immunol., 30, 3219-3227 (2000)
[45] Taams, L. S.; Boot, E. P.; van Eden, W.; Wauben, M. H., Anergic T cells modulate the T-cell activating capacity of antigen-presenting cells (in process citation), J. Autoimmun., 14, 335-341 (2000)
[46] Takahashi, T.; Kuniyasu, Y.; Toda, M.; Sakaguchi, N.; Itoh, M.; Iwata, M.; Shimizu, J.; Sakaguchi, S., Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cellsinduction of autoimmune disease by breaking their anergic/suppressive state, Int. Immunol., 10, 1969-1980 (1998)
[47] Thornton, A. M.; Shevach, E. M., CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production, J. Exp. Med., 188, 287-296 (1998)
[48] Thornton, A. M.; Shevach, E. M., Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific, J. Immunol., 164, 183-190 (2000)
[49] Valitutti, S.; Muller, S.; Cella, M.; Padovan, E.; Lanzavecchia, A., Serial triggering of many T-cell receptors by a few peptide-MHC complexes (see comments), Nature, 375, 148-151 (1995)
[50] Vendetti, S.; Chai, J. G.; Dyson, J.; Simpson, E.; Lombardi, G.; Lechler, R., Anergic T cells inhibit the antigen-presenting function of dendritic cells, J. Immunol., 165, 1175-1181 (2000)
[51] Waldmann, H.; Cobbold, S., How do monoclonal antibodies induce tolerance? A role for infectious tolerance?, Annu. Rev. Immunol., 16, 619-644 (1998)
[52] Wise, M. P.; Bemelman, F.; Cobbold, S. P.; Waldmann, H., Linked suppression of skin graft rejection can operate through indirect recognition, J. Immunol., 161, 5813-5816 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.