×

Generating series of all modular graph forms from iterated Eisenstein integrals. (English) Zbl 1451.83095

Summary: We study generating series of torus integrals that contain all so-called modular graph forms relevant for massless one-loop closed-string amplitudes. By analysing the differential equation of the generating series we construct a solution for their low-energy expansion to all orders in the inverse string tension \(\alpha\)’. Our solution is expressed through initial data involving multiple zeta values and certain real-analytic functions of the modular parameter of the torus. These functions are built from real and imaginary parts of holomorphic iterated Eisenstein integrals and should be closely related to Brown’s recent construction of real-analytic modular forms. We study the properties of our real-analytic objects in detail and give explicit examples to a fixed order in the \(\alpha\)’-expansion. In particular, our solution allows for a counting of linearly independent modular graph forms at a given weight, confirming previous partial results and giving predictions for higher, hitherto unexplored weights. It also sheds new light on the topic of uniform transcendentality of the \(\alpha\)’-expansion.

MSC:

83E30 String and superstring theories in gravitational theory
81U05 \(2\)-body potential quantum scattering theory

References:

[1] Green, MB; Vanhove, P., The low-energy expansion of the one loop type-II superstring amplitude, Phys. Rev. D, 61, 104011 (2000)
[2] Green, MB; Russo, JG; Vanhove, P., Low energy expansion of the four-particle genus-one amplitude in type-II superstring theory, JHEP, 02, 020 (2008)
[3] Green, MB; Mafra, CR; Schlotterer, O., Multiparticle one-loop amplitudes and S-duality in closed superstring theory, JHEP, 10, 188 (2013) · Zbl 1342.83372
[4] D’Hoker, E.; Green, MB; Vanhove, P., On the modular structure of the genus-one Type II superstring low energy expansion, JHEP, 08, 041 (2015) · Zbl 1388.81515
[5] E. D’Hoker, M.B. Green and P. Vanhove, Proof of a modular relation between 1-, 2- and 3-loop Feynman diagrams on a torus, J. Numb. Theor. (2018) 381 [arXiv:1509.00363] [INSPIRE].
[6] Basu, A., Poisson equation for the Mercedes diagram in string theory at genus one, Class. Quant. Grav., 33 (2016) · Zbl 1338.83169
[7] Zerbini, F., Single-valued multiple zeta values in genus 1 superstring amplitudes, Commun. Num. Theor. Phys., 10, 703 (2016) · Zbl 1365.81095
[8] D’Hoker, E.; Green, MB; Gürdogan, Ö.; Vanhove, P., Modular graph functions, Commun. Num. Theor. Phys., 11, 165 (2017) · Zbl 1426.11082
[9] D’Hoker, E.; Green, MB, Identities between modular graph forms, J. Number Theor., 189, 25 (2018) · Zbl 1450.11062
[10] Basu, A., Poisson equation for the three loop ladder diagram in string theory at genus one, Int. J. Mod. Phys. A, 31, 1650169 (2016) · Zbl 1355.81119
[11] Basu, A., Proving relations between modular graph functions, Class. Quant. Grav., 33, 235011 (2016) · Zbl 1354.83052
[12] Basu, A., Simplifying the one loop five graviton amplitude in type IIB string theory, Int. J. Mod. Phys. A, 32, 1750074 (2017) · Zbl 1366.81251
[13] D’Hoker, E.; Kaidi, J., Hierarchy of modular graph identities, JHEP, 11, 051 (2016) · Zbl 1390.81423
[14] Kleinschmidt, A.; Verschinin, V., Tetrahedral modular graph functions, JHEP, 09, 155 (2017) · Zbl 1382.81206
[15] D’Hoker, E.; Duke, W., Fourier series of modular graph functions, J. Numb. Theor., 192, 1 (2018) · Zbl 1444.11180
[16] Basu, A., Low momentum expansion of one loop amplitudes in heterotic string theory, JHEP, 11, 139 (2017) · Zbl 1383.83152
[17] Broedel, J.; Schlotterer, O.; Zerbini, F., From elliptic multiple zeta values to modular graph functions: open and closed strings at one loop, JHEP, 01, 155 (2019) · Zbl 1409.83178
[18] Ahlén, O.; Kleinschmidt, A., D^6R^4curvature corrections, modular graph functions and Poincaré series, JHEP, 05, 194 (2018) · Zbl 1391.83100
[19] F. Zerbini, Elliptic multiple zeta values, modular graph functions and genus 1 superstring scattering amplitudes, Ph.D. thesis, Bonn University, Bonn, Germany (2017), arXiv:1804.07989 [INSPIRE].
[20] Gerken, JE; Kaidi, J., Holomorphic subgraph reduction of higher-point modular graph forms, JHEP, 01, 131 (2019) · Zbl 1409.83185
[21] Gerken, JE; Kleinschmidt, A.; Schlotterer, O., Heterotic-string amplitudes at one loop: modular graph forms and relations to open strings, JHEP, 01, 052 (2019) · Zbl 1409.83186
[22] E. D’Hoker and J. Kaidi, Modular graph functions and odd cuspidal functions. Fourier and Poincaré series, JHEP04 (2019) 136 [arXiv:1902.04180] [INSPIRE]. · Zbl 1415.83054
[23] Dorigoni, D.; Kleinschmidt, A., Modular graph functions and asymptotic expansions of Poincaré series, Commun. Num. Theor. Phys., 13, 569 (2019) · Zbl 1426.81053
[24] D’Hoker, E.; Green, MB, Absence of irreducible multiple zeta-values in melon modular graph functions, Commun. Num. Theor. Phys., 14, 315 (2020) · Zbl 1451.11094
[25] D’Hoker, E., Integral of two-loop modular graph functions, JHEP, 06, 092 (2019) · Zbl 1416.83115
[26] D’Hoker, E.; Green, MB, Exploring transcendentality in superstring amplitudes, JHEP, 07, 149 (2019) · Zbl 1418.81090
[27] A. Basu, Eigenvalue equation for the modular graph C_a,b,c,d, JHEP07 (2019) 126 [arXiv:1906.02674] [INSPIRE].
[28] Zagier, D.; Zerbini, F., Genus-zero and genus-one string amplitudes and special multiple zeta values, Commun. Num. Theor. Phys., 14, 413 (2020) · Zbl 1447.11097
[29] M. Berg, K. Bringmann and T. Gannon, Massive deformations of Maass forms and Jacobi forms, arXiv:1910.02745 [INSPIRE].
[30] Gerken, JE; Kleinschmidt, A.; Schlotterer, O., All-order differential equations for one-loop closed-string integrals and modular graph forms, JHEP, 01, 064 (2020) · Zbl 1434.83147
[31] Hohenegger, S., From little string free energies towards modular graph functions, JHEP, 03, 077 (2020) · Zbl 1435.83180
[32] D’Hoker, E.; Green, MB, Zhang-Kawazumi invariants and superstring amplitudes, J. Numb. Theor., 144, 111 (2014) · Zbl 1298.81260
[33] D’Hoker, E.; Green, MB; Pioline, B.; Russo, R., Matching the D^6R^4interaction at two-loops, JHEP, 01, 031 (2015)
[34] Pioline, B., A Theta lift representation for the Kawazumi-Zhang and Faltings invariants of genus-two Riemann surfaces, J. Number Theor., 163, 520 (2016) · Zbl 1408.14096
[35] D’Hoker, E.; Green, MB; Pioline, B., Higher genus modular graph functions, string invariants and their exact asymptotics, Commun. Math. Phys., 366, 927 (2019) · Zbl 1430.14072
[36] D’Hoker, E.; Green, MB; Pioline, B., Asymptotics of the D^8R^4genus-two string invariant, Commun. Num. Theor. Phys., 13, 351 (2019) · Zbl 1416.83116
[37] Basu, A., Eigenvalue equation for genus two modular graphs, JHEP, 02, 046 (2019) · Zbl 1411.83110
[38] Mafra, CR; Schlotterer, O., All order α′ expansion of one-loop open-string integrals, Phys. Rev. Lett., 124, 101603 (2020)
[39] Mafra, CR; Schlotterer, O., One-loop open-string integrals from differential equations: all-order α′ -expansions at n points, JHEP, 03, 007 (2020) · Zbl 1435.83183
[40] Broedel, J.; Mafra, CR; Matthes, N.; Schlotterer, O., Elliptic multiple zeta values and one-loop superstring amplitudes, JHEP, 07, 112 (2015) · Zbl 1388.83190
[41] Broedel, J.; Matthes, N.; Schlotterer, O., Relations between elliptic multiple zeta values and a special derivation algebra, J. Phys. A, 49, 155203 (2016) · Zbl 1354.81045
[42] Broedel, J.; Matthes, N.; Richter, G.; Schlotterer, O., Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes, J. Phys. A, 51, 285401 (2018) · Zbl 1401.81071
[43] J. Broedel and O. Schlotterer, One-loop string scattering amplitudes as iterated Eisenstein integrals, in KMPB Conference: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, pp. 133-159, 2019, DOI [INSPIRE].
[44] J. Broedel and A. Kaderli, Amplitude recursions with an extra marked point, arXiv:1912.09927 [INSPIRE].
[45] Zagier, D.; Gangl, H., Classical and elliptic polylogarithms and special values of L-series, NATO Sci. Ser. C, 548, 561 (2000) · Zbl 0990.11041
[46] Brown, F., A class of non-holomorphic modular forms I, Res. Math. Sci., 5, 5 (2018) · Zbl 1441.11103
[47] E. Panzer, Modular graph functions as iterated Eisenstein integrals, talk given at the workshop Elliptic integrals in mathematics and physics , September 5-8, Ascona, Switzerland (2018).
[48] F. Brown, Multiple modular values and the relative completion of the fundamental group of ℳ_1, 1, arXiv:1407.5167.
[49] F. Brown, A class of non-holomorphic modular forms II: equivariant iterated Eisenstein integrals, arXiv:1708.03354. · Zbl 1452.11054
[50] Tsunogai, H., On some derivations of Lie algebras related to Galois representations, Publ. Res. Inst. Math. Sci., 31, 113 (1995) · Zbl 0838.11040
[51] A. Kleinschmidt, O. Schlotterer and B. Verbeek, Basis decompositions and a Mathematica package for modular graph forms, arXiv:2007.05476 [INSPIRE].
[52] Schnetz, O., Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys., 08, 589 (2014) · Zbl 1320.81075
[53] Brown, F., Single-valued motivic periods and multiple zeta values, SIGMA, 2 (2014) · Zbl 1377.11099
[54] Schlotterer, O.; Stieberger, S., Motivic multiple Zeta values and superstring amplitudes, J. Phys. A, 46, 475401 (2013) · Zbl 1280.81112
[55] Stieberger, S., Closed superstring amplitudes, single-valued multiple zeta values and the Deligne associator, J. Phys. A, 47, 155401 (2014) · Zbl 1288.81121
[56] Stieberger, S.; Taylor, TR, Closed string amplitudes as single-valued open string amplitudes, Nucl. Phys. B, 881, 269 (2014) · Zbl 1284.81245
[57] Schlotterer, O.; Schnetz, O., Closed strings as single-valued open strings: a genus-zero derivation, J. Phys. A, 52 (2019) · Zbl 1422.81155
[58] F. Brown and C. Dupont, Single-valued integration and double copy, arXiv:1810.07682 [INSPIRE].
[59] P. Vanhove and F. Zerbini, Closed string amplitudes from single-valued correlation functions, arXiv:1812.03018 [INSPIRE].
[60] F. Brown and C. Dupont, Single-valued integration and superstring amplitudes in genus zero, arXiv:1910.01107 [INSPIRE].
[61] D. Dorigoni and A. Kleinschmidt, Resurgent expansion of Lambert series and iterated Eisenstein integrals, arXiv:2001.11035 [INSPIRE]. · Zbl 1426.81053
[62] D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo Sect. IA Math.28 (1981) (1982) 415. · Zbl 0505.10011
[63] Bump, D., The Rankin-Selberg method: an introduction and survey, Ohio State Univ. Math. Res. Inst. Publ., 11, 41 (2005) · Zbl 1188.11022
[64] Angelantonj, C.; Florakis, I.; Pioline, B., A new look at one-loop integrals in string theory, Commun. Num. Theor. Phys., 6, 159 (2012) · Zbl 1270.81147
[65] Angelantonj, C.; Florakis, I.; Pioline, B., One-Loop BPS amplitudes as BPS-state sums, JHEP, 06, 070 (2012) · Zbl 1397.81211
[66] Aomoto, K., Gauss-Manin connection of integral of difference products, J. Math. Soc. Japan, 39, 191 (1987) · Zbl 0619.32010
[67] Mizera, S., Combinatorics and topology of Kawai-Lewellen-Tye relations, JHEP, 08, 097 (2017) · Zbl 1381.83126
[68] S. Mizera, Aspects of scattering amplitudes and moduli space localization, Ph.D. thesis, Perimeter Institute for Theoretical Physics, Waterloo, Canada (2019), arXiv:1906.02099 [INSPIRE].
[69] Blumlein, J.; Broadhurst, DJ; Vermaseren, JAM, The multiple Zeta value data mine, Comput. Phys. Commun., 181, 582 (2010) · Zbl 1221.11183
[70] L. Kronecker, Zur Theorie der elliptischen Funktionen, Math. WerkeIV (1881) 313. · JFM 13.0363.01
[71] F. Brown and A. Levin, Multiple elliptic polylogarithms, arXiv:1110.6917.
[72] Berg, M.; Buchberger, I.; Schlotterer, O., From maximal to minimal supersymmetry in string loop amplitudes, JHEP, 04, 163 (2017) · Zbl 1378.81134
[73] Dolan, L.; Goddard, P., Current algebra on the torus, Commun. Math. Phys., 285, 219 (2009) · Zbl 1228.81181
[74] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 2: loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge U.K. (1988).
[75] Brown, F., A class of non-holomorphic modular forms III: real analytic cusp forms for SL_2 (ℤ), Res. Math. Sci., 5, 34 (2018) · Zbl 1440.11071
[76] Calaque, D.; Enriquez, B.; Etingof, P., Universal KZB equations: the elliptic case, Progr. Math., 269, 165 (2009) · Zbl 1241.32011
[77] B. Enriquez, Elliptic associators, Selecta Math. (N.S.)20 (2014) 491. · Zbl 1294.17012
[78] R. Hain, Notes on the universal elliptic KZB equation, arXiv:1309.0580 [INSPIRE]. · Zbl 1439.14044
[79] J.G. Luque, J.C. Novelli and J.Y. Thibon, Period polynomials and Ihara brackets, J. Lie Theory17 (2007) 229 [math/0606301]. · Zbl 1135.17002
[80] A. Pollack, Relations between derivations arising from modular forms, https://dukespace.lib.duke.edu/dspace/handle/10161/1281 (2009).
[81] J. Broedel, N. Matthes and O. Schlotterer. https://tools.aei.mpg.de/emzv.
[82] Matthes, N., On the algebraic structure of iterated integrals of quasimodular forms, Alg. Numb. Theor., 11-9, 2113 (2017) · Zbl 1429.11076
[83] J. Broedel, E. Panzer, O. Schlotterer and F. Zerbini, unpublished notes (2019).
[84] J.E. Gerken, Basis decompositions and a Mathematica package for modular graph forms, arXiv:2007.05476.
[85] Basu, A., Transcendentality violation in type IIB string amplitudes, JHEP, 02, 034 (2020) · Zbl 1435.83169
[86] Green, MB; Schwarz, JH; Brink, L., N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B, 198, 474 (1982)
[87] Mafra, CR; Schlotterer, O., One-loop superstring six-point amplitudes and anomalies in pure spinor superspace, JHEP, 04, 148 (2016) · Zbl 1388.83681
[88] C.R. Mafra and O. Schlotterer, Towards the n-point one-loop superstring amplitude. Part III. One-loop correlators and their double-copy structure, JHEP08 (2019) 092 [arXiv:1812.10971] [INSPIRE]. · Zbl 1421.83120
[89] Bianchi, M.; Consoli, D., Simplifying one-loop amplitudes in superstring theory, JHEP, 01, 043 (2016) · Zbl 1388.81775
[90] Huang, Y-t; Schlotterer, O.; Wen, C., Universality in string interactions, JHEP, 09, 155 (2016) · Zbl 1390.81441
[91] Schlotterer, O., Amplitude relations in heterotic string theory and Einstein-Yang-Mills, JHEP, 11, 074 (2016) · Zbl 1390.83354
[92] Azevedo, T.; Chiodaroli, M.; Johansson, H.; Schlotterer, O., Heterotic and bosonic string amplitudes via field theory, JHEP, 10, 012 (2018) · Zbl 1402.83092
[93] Broedel, J.; Schlotterer, O.; Stieberger, S., Polylogarithms, multiple zeta values and superstring amplitudes, Fortsch. Phys., 61, 812 (2013) · Zbl 1338.81316
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.