×

On the modular structure of the genus-one type II superstring low energy expansion. (English) Zbl 1388.81515

Summary: The analytic contribution to the low energy expansion of Type II string amplitudes at genus-one is a power series in space-time derivatives with coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet torus. These modular functions are associated with world-sheet vacuum Feynman diagrams and given by multiple sums over the discrete momenta on the torus. In this paper we exhibit exact differential and algebraic relations for a certain infinite class of such modular functions by showing that they satisfy Laplace eigenvalue equations with inhomogeneous terms that are polynomial in non-holomorphic Eisenstein series. Furthermore, we argue that the set of modular functions that contribute to the coefficients of interactions up to order \( {D}^{10}{{\mathcal{R}}}^4 \) are linear sums of functions in this class and quadratic polynomials in Eisenstein series and odd Riemann zeta values. Integration over the complex structure results in coefficients of the low energy expansion that are rational numbers multiplying monomials in odd Riemann zeta values.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

Software:

Cuba

References:

[1] M.B. Green and M. Gutperle, Effects of D instantons, Nucl. Phys.B 498 (1997) 195 [hep-th/9701093] [INSPIRE]. · Zbl 0979.81566 · doi:10.1016/S0550-3213(97)00269-1
[2] M.B. Green, M. Gutperle and P. Vanhove, One loop in eleven-dimensions, Phys. Lett.B 409 (1997) 177 [hep-th/9706175] [INSPIRE]. · doi:10.1016/S0370-2693(97)00931-3
[3] M.B. Green and S. Sethi, Supersymmetry constraints on type IIB supergravity, Phys. Rev.D 59 (1999) 046006 [hep-th/9808061] [INSPIRE].
[4] M.B. Green and P. Vanhove, The low-energy expansion of the one loop type-II superstring amplitude, Phys. Rev.D 61 (2000) 104011 [hep-th/9910056] [INSPIRE].
[5] M.B. Green, H.-h. Kwon and P. Vanhove, Two loops in eleven-dimensions, Phys. Rev.D 61 (2000) 104010 [hep-th/9910055] [INSPIRE].
[6] A. Sinha, The Ĝ4λ16term in IIB supergravity, JHEP08 (2002) 017 [hep-th/0207070] [INSPIRE]. · Zbl 1226.81230 · doi:10.1088/1126-6708/2002/08/017
[7] E. D’Hoker and D.H. Phong, Two-loop superstrings VI: Non-renormalization theorems and the 4-point function, Nucl. Phys.B 715 (2005) 3 [hep-th/0501197] [INSPIRE]. · Zbl 1207.81111 · doi:10.1016/j.nuclphysb.2005.02.043
[8] E. D’Hoker, M. Gutperle and D.H. Phong, Two-loop superstrings and S-duality, Nucl. Phys.B 722 (2005) 81 [hep-th/0503180] [INSPIRE]. · Zbl 1128.81317 · doi:10.1016/j.nuclphysb.2005.06.010
[9] M.B. Green and P. Vanhove, Duality and higher derivative terms in M-theory, JHEP01 (2006) 093 [hep-th/0510027] [INSPIRE]. · doi:10.1088/1126-6708/2006/01/093
[10] M.B. Green, S.D. Miller and P. Vanhove, SL2ℤ \[\text{S}\text{L}\left(2,\mathbb{Z}\right) \]-invariance and D-instanton contributions to the D6R4interaction, Commun. Num. Theor. Phys.09 (2015) 307 [arXiv:1404.2192] [INSPIRE]. · Zbl 1338.81322 · doi:10.4310/CNTP.2015.v9.n2.a3
[11] H. Gomez and C.R. Mafra, The closed-string 3-loop amplitude and S-duality, JHEP10 (2013) 217 [arXiv:1308.6567] [INSPIRE]. · Zbl 1342.83103 · doi:10.1007/JHEP10(2013)217
[12] E. D’Hoker, M.B. Green, B. Pioline and R. Russo, Matching the D6R4interaction at two-loops, JHEP01 (2015) 031 [arXiv:1405.6226] [INSPIRE]. · doi:10.1007/JHEP01(2015)031
[13] M.B. Green and P. Vanhove, D instantons, strings and M-theory, Phys. Lett.B 408 (1997) 122 [hep-th/9704145] [INSPIRE]. · doi:10.1016/S0370-2693(97)00785-5
[14] E. Kiritsis and B. Pioline, On R4threshold corrections in IIB string theory and (p, q) string instantons, Nucl. Phys.B 508 (1997) 509 [hep-th/9707018] [INSPIRE]. · Zbl 0925.81283 · doi:10.1016/S0550-3213(97)00645-7
[15] N.A. Obers and B. Pioline, U duality and M-theory, Phys. Rept.318 (1999) 113 [hep-th/9809039] [INSPIRE]. · doi:10.1016/S0370-1573(99)00004-6
[16] B. Pioline, A note on nonperturbative R4couplings, Phys. Lett.B 431 (1998) 73 [hep-th/9804023] [INSPIRE]. · doi:10.1016/S0370-2693(98)00554-1
[17] N.A. Obers and B. Pioline, Eisenstein series and string thresholds, Commun. Math. Phys.209 (2000) 275 [hep-th/9903113] [INSPIRE]. · Zbl 1043.81059 · doi:10.1007/s002200050022
[18] A. Basu, The D4R4term in type IIB string theory on T2and U-duality, Phys. Rev.D 77 (2008) 106003 [arXiv:0708.2950] [INSPIRE].
[19] A. Basu, The D6R4term in type IIB string theory on T2and U-duality, Phys. Rev.D 77 (2008) 106004 [arXiv:0712.1252] [INSPIRE].
[20] M.B. Green, J.G. Russo and P. Vanhove, Automorphic properties of low energy string amplitudes in various dimensions, Phys. Rev.D 81 (2010) 086008 [arXiv:1001.2535] [INSPIRE].
[21] B. Pioline, R4couplings and automorphic unipotent representations, JHEP03 (2010) 116 [arXiv:1001.3647] [INSPIRE]. · Zbl 1271.81146 · doi:10.1007/JHEP03(2010)116
[22] M.B. Green, S.D. Miller, J.G. Russo and P. Vanhove, Eisenstein series for higher-rank groups and string theory amplitudes, Commun. Num. Theor. Phys.4 (2010) 551 [arXiv:1004.0163] [INSPIRE]. · Zbl 1218.83034 · doi:10.4310/CNTP.2010.v4.n3.a2
[23] B. Pioline, D6R4amplitudes in various dimensions, JHEP04 (2015) 057 [arXiv:1502.03377] [INSPIRE]. · doi:10.1007/JHEP04(2015)057
[24] E. D’Hoker and M.B. Green, Zhang-Kawazumi Invariants and Superstring Amplitudes, arXiv:1308.4597 [INSPIRE]. · Zbl 1298.81260
[25] M.B. Green, J.G. Russo and P. Vanhove, Low energy expansion of the four-particle genus-one amplitude in type-II superstring theory, JHEP02 (2008) 020 [arXiv:0801.0322] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/020
[26] F. Brown, Single-valued Motivic Periods and Multiple Zeta Values, SIGMA2 (2014) e25 [arXiv:1309.5309] [INSPIRE]. · Zbl 1377.11099
[27] S. Stieberger, Constraints on Tree-Level Higher Order Gravitational Couplings in Superstring Theory, Phys. Rev. Lett.106 (2011) 111601 [arXiv:0910.0180] [INSPIRE]. · doi:10.1103/PhysRevLett.106.111601
[28] O. Schlotterer and S. Stieberger, Motivic Multiple Zeta Values and Superstring Amplitudes, J. Phys.A 46 (2013) 475401 [arXiv:1205.1516] [INSPIRE]. · Zbl 1280.81112
[29] F.C.S. Brown, Multiple zeta values and periods of moduli spacesM0,nℝ \[{\mathfrak{M}}_{0,n}\left(\mathbb{R}\right) \], Annales Sci. Ecole Norm. Sup.42 (2009) 371 [math/0606419] [INSPIRE]. · Zbl 1216.11079
[30] J. Broedel, O. Schlotterer, S. Stieberger and T. Terasoma, All order α′-expansion of superstring trees from the Drinfeld associator, Phys. Rev.D 89 (2014) 066014 [arXiv:1304.7304] [INSPIRE].
[31] S. Stieberger, Closed superstring amplitudes, single-valued multiple zeta values and the Deligne associator, J. Phys.A 47 (2014) 155401 [arXiv:1310.3259] [INSPIRE]. · Zbl 1288.81121
[32] J.M. Drummond and É. Ragoucy, Superstring amplitudes and the associator, JHEP08 (2013) 135 [arXiv:1301.0794] [INSPIRE]. · Zbl 1342.81420 · doi:10.1007/JHEP08(2013)135
[33] Weil A. Elliptic functions according to Eisenstein and Kronecker, Ergebnisse der Mathematik 88, Springer (1977). · Zbl 0318.33004
[34] A. Levin, Elliptic poly-logarithms: an analytic theory, Compositio Math.106 (1997) 267. · Zbl 0905.11028 · doi:10.1023/A:1000193320513
[35] A. B. Goncharov, Hodge correlators, arXiv:0803.0297.
[36] J. Broedel, C.R. Mafra, N. Matthes and O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes, JHEP07 (2015) 112 [arXiv:1412.5535] [INSPIRE]. · Zbl 1107.82419 · doi:10.1007/JHEP07(2015)112
[37] F. Brown and A. Levin, Multiple elliptic poly-logarithms, arXiv:1110.6917.
[38] M.B. Green, J.G. Russo and P. Vanhove, Modular properties of two-loop maximal supergravity and connections with string theory, JHEP07 (2008) 126 [arXiv:0807.0389] [INSPIRE]. · doi:10.1088/1126-6708/2008/07/126
[39] D. Zagier, Notes on Lattice Sums, unpublished. · Zbl 0237.10025
[40] M.B. Green, C.R. Mafra and O. Schlotterer, Multiparticle one-loop amplitudes and S-duality in closed superstring theory, JHEP10 (2013) 188 [arXiv:1307.3534] [INSPIRE]. · Zbl 1342.83372 · doi:10.1007/JHEP10(2013)188
[41] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies And Phenomenology, Cambridge University Press, Cambridge U.K. (1987). · Zbl 0619.53002
[42] E. D’Hoker and D.H. Phong, The box graph in superstring theory, Nucl. Phys.B 440 (1995) 24 [hep-th/9410152] [INSPIRE]. · Zbl 0990.81655 · doi:10.1016/0550-3213(94)00526-K
[43] H. Gomez and C.R. Mafra, The Overall Coefficient of the Two-loop Superstring Amplitude Using Pure Spinors, JHEP05 (2010) 017 [arXiv:1003.0678] [INSPIRE]. · Zbl 1288.81105 · doi:10.1007/JHEP05(2010)017
[44] D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo Sect. IA Math.28 (1981) 415437. · Zbl 0505.10011
[45] E. D’Hoker and D.H. Phong, The Geometry of String Perturbation Theory, Rev. Mod. Phys.60 (1988) 917 [INSPIRE]. · doi:10.1103/RevModPhys.60.917
[46] E. Witten, Superstring Perturbation Theory Revisited, arXiv:1209.5461 [INSPIRE]. · Zbl 1421.81101
[47] R. Donagi and E. Witten, Supermoduli Space Is Not Projected, arXiv:1304.7798 [INSPIRE]. · Zbl 1356.14021
[48] E. D’Hoker and D.H. Phong, Two loop superstrings. 2. The chiral measure on moduli space, Nucl. Phys.B 636 (2002) 3 [hep-th/0110283] [INSPIRE]. · Zbl 0996.81079 · doi:10.1016/S0550-3213(02)00431-5
[49] E. D’Hoker and D.H. Phong, Two loop superstrings. 4. The cosmological constant and modular forms, Nucl. Phys.B 639 (2002) 129 [hep-th/0111040] [INSPIRE]. · Zbl 0997.81083 · doi:10.1016/S0550-3213(02)00516-3
[50] S.W. Zhang, Gross-Schoen Cycles and Dualising Sheaves, Inventiones mathematicae179 (2009) 1 [arXiv:0812.0371]. · Zbl 1193.14031 · doi:10.1007/s00222-009-0209-3
[51] N. Kawazumi, Johnson’s homomorphisms and the Arakelov Green function, arXiv:0801.4218.
[52] K.-W. Chen and M. Eie, Explicit evaluations of extended Euler sums, J. Number Theor.117 (2006) 31. · Zbl 1097.11044 · doi:10.1016/j.jnt.2005.05.011
[53] T. Hahn, CUBA: A library for multidimensional numerical integration, Comput. Phys. Commun.168 (2005) 78 [hep-ph/0404043] [INSPIRE]. · Zbl 1196.65052 · doi:10.1016/j.cpc.2005.01.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.