×

Traintrack Calabi-Yaus from twistor geometry. (English) Zbl 1451.81362

Summary: We describe the geometry of the leading singularity locus of the traintrack integral family directly in momentum twistor space. For the two-loop case, known as the elliptic double box, the leading singularity locus is a genus one curve, which we obtain as an intersection of two quadrics in \(\mathbb{P}^3\). At three loops, we obtain a K3 surface which arises as a branched surface over two genus-one curves in \(\mathbb{P}^1 \times \mathbb{P}^1\). We present an analysis of its properties. We also discuss the geometry at higher loops and the supersymmetrization of the construction.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81U05 \(2\)-body potential quantum scattering theory
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J28 \(K3\) surfaces and Enriques surfaces

Software:

PALP

References:

[1] Belkale, P.; Brosnan, P., Matroids, motives, and a conjecture of Kontsevich, Duke Math. J., 116, 147 (2003) · Zbl 1076.14026 · doi:10.1215/S0012-7094-03-11615-4
[2] Brown, F.; Schnetz, O., A K3 in ϕ^4, Duke Math. J., 161, 1817 (2012) · Zbl 1253.14024 · doi:10.1215/00127094-1644201
[3] F. Cachazo, Sharpening The Leading Singularity, arXiv:0803.1988 [INSPIRE].
[4] Usyukina, NI; Davydychev, AI, Exact results for three and four point ladder diagrams with an arbitrary number of rungs, Phys. Lett. B, 305, 136 (1993) · doi:10.1016/0370-2693(93)91118-7
[5] Caron-Huot, S.; Larsen, KJ, Uniqueness of two-loop master contours, JHEP, 10, 026 (2012) · doi:10.1007/JHEP10(2012)026
[6] Bourjaily, JL; McLeod, AJ; Spradlin, M.; von Hippel, M.; Wilhelm, M., Elliptic Double-Box Integrals: Massless Scattering Amplitudes beyond Polylogarithms, Phys. Rev. Lett., 120, 121603 (2018) · doi:10.1103/PhysRevLett.120.121603
[7] F.C.S. Brown, On the periods of some Feynman integrals, arXiv:0910.0114 [INSPIRE].
[8] Bourjaily, JL; McLeod, AJ; von Hippel, M.; Wilhelm, M., Bounded Collection of Feynman Integral Calabi-Yau Geometries, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.031601
[9] M. Besier, D. Festi, M. Harrison and B. Naskrecki, Arithmetic and geometry of a K 3 surface emerging from virtual corrections to Drell-Yan scattering, arXiv:1908.01079 [INSPIRE].
[10] Festi, D.; van Straten, D., Bhabha Scattering and a special pencil of K 3 surfaces, Commun. Num. Theor. Phys., 13, 463 (2019) · Zbl 1504.14071 · doi:10.4310/CNTP.2019.v13.n2.a4
[11] Bourjaily, JL; McLeod, AJ; Vergu, C.; Volk, M.; Von Hippel, M.; Wilhelm, M., Embedding Feynman Integral (Calabi-Yau) Geometries in Weighted Projective Space, JHEP, 01, 078 (2020) · Zbl 1434.81033 · doi:10.1007/JHEP01(2020)078
[12] Klemm, A.; Nega, C.; Safari, R., The l-loop Banana Amplitude from GKZ Systems and relative Calabi-Yau Periods, JHEP, 04, 088 (2020) · doi:10.1007/JHEP04(2020)088
[13] Bloch, S.; Kerr, M.; Vanhove, P., A Feynman integral via higher normal functions, Compos. Math., 151, 2329 (2015) · Zbl 1365.81090 · doi:10.1112/S0010437X15007472
[14] Bloch, S.; Kerr, M.; Vanhove, P., Local mirror symmetry and the sunset Feynman integral, Adv. Theor. Math. Phys., 21, 1373 (2017) · Zbl 1390.14123 · doi:10.4310/ATMP.2017.v21.n6.a1
[15] Bourjaily, JL; He, Y-H; Mcleod, AJ; Von Hippel, M.; Wilhelm, M., Traintracks through Calabi-Yau Manifolds: Scattering Amplitudes beyond Elliptic Polylogarithms, Phys. Rev. Lett., 121 (2018) · doi:10.1103/PhysRevLett.121.071603
[16] Hodges, A., Eliminating spurious poles from gauge-theoretic amplitudes, JHEP, 05, 135 (2013) · Zbl 1342.81291 · doi:10.1007/JHEP05(2013)135
[17] Drummond, JM; Henn, J.; Smirnov, VA; Sokatchev, E., Magic identities for conformal four-point integrals, JHEP, 01, 064 (2007) · doi:10.1088/1126-6708/2007/01/064
[18] Bern, Z., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.045007
[19] Drummond, JM; Henn, J.; Korchemsky, GP; Sokatchev, E., Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B, 815, 142 (2009) · Zbl 1194.81316 · doi:10.1016/j.nuclphysb.2009.02.015
[20] Hodges, A., The Box Integrals in Momentum-Twistor Geometry, JHEP, 08, 051 (2013) · Zbl 1342.81190 · doi:10.1007/JHEP08(2013)051
[21] Griffiths, P.; Harris, J., Principles of Algebraic Geometry (1978), New York U.S.A: John Wiley & Sons Inc., New York U.S.A · Zbl 0408.14001
[22] Arkani-Hamed, N.; Bourjaily, JL; Cachazo, F.; Trnka, J., Local Integrals for Planar Scattering Amplitudes, JHEP, 06, 125 (2012) · Zbl 1397.81428 · doi:10.1007/JHEP06(2012)125
[23] P.S. Aspinwall, K 3 surfaces and string duality, in proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 96): Fields, Strings, and Duality, Boulder, CO, U.S.A., 2-28 June 1996, pp. 421-540 [hep-th/9611137] [INSPIRE].
[24] Huybrechts, D., Lectures on K3 Surfaces (2016), Cambridge U.K: Cambridge University Press, Cambridge U.K · Zbl 1360.14099
[25] Nikulin, VV, Finite automorphism groups of Kählerian surfaces of type K3, Tr. Mosk. Mat. O.-va, 38, 75 (1979) · Zbl 0433.14024
[26] van Geemen, B.; Sarti, A., Nikulin involutions on K 3 surfaces, Math. Z., 255, 731 (2007) · Zbl 1141.14022 · doi:10.1007/s00209-006-0047-6
[27] Batyrev, VV, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom., 3, 493 (1994) · Zbl 0829.14023
[28] V.V. Batyrev and L.A. Borisov, On Calabi-Yau complete intersections in toric varieties, alg-geom/9412017 [INSPIRE]. · Zbl 0908.14015
[29] L. Borisov, Towards the Mirror Symmetry for Calabi-Yau Complete intersections in Gorenstein Toric Fano Varieties, alg-geom/9310001.
[30] M. Kreuzer and H. Skarke, PALP: A Package for analyzing lattice polytopes with applications to toric geometry, Comput. Phys. Commun.157 (2004) 87 [math/0204356] [INSPIRE]. · Zbl 1196.14007
[31] V.V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, alg-geom/9711008. · Zbl 0963.14015
[32] Mason, LJ; Skinner, D., The Complete Planar S-matrix of N = 4 SYM as a Wilson Loop in Twistor Space, JHEP, 12, 018 (2010) · Zbl 1294.81122 · doi:10.1007/JHEP12(2010)018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.