×

On detuned 1:1:3 Hamiltonian resonance with cases of symmetric cubic and quartic potentials. (English) Zbl 1451.37084

Summary: This paper deals with a normal form of Hamiltonian \(1\):\(1\):\(3\) resonance. It is not integrable, and we write it using the basic invariants. Also, we identify the coefficients of the terms that remain in the normalization procedure. Then, by choosing different potential functions, we consider three integrable subfamilies of the Hamiltonian with a discrete symmetry. They are containing a Hamiltonian in a 3D Greene case, a generalized Hénon-Heiles Hamiltonian, and a quartic Hamiltonian. We consider the detuning parameters and analyze the bifurcations.
©2020 American Institute of Physics

MSC:

37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
37J20 Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI

References:

[1] Arnol’d, V. I., Kozlov, V. V., and Neishtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics: Dynamical Systems III, Encyclopaedia of Mathematical Sciences, edited by V. I. Arnol’d (Springer, 2006). · Zbl 1105.70002
[2] Bruggeman, R.; Verhulst, F., The inhomogeneous Fermi-Pasta-Ulam chain, a case study of the \(1 : 2 : 3\) resonance, Acta Appl. Math., 152, 111-145 (2017) · Zbl 1394.70049 · doi:10.1007/s10440-017-0115-4
[3] Duistermaat, J. J., Non-integrability of the \(1\):\(2\):\(1\)-resonance, Ergod. Theor. Dyn. Syst., 4, 553-568 (1984) · Zbl 0537.58026 · doi:10.1017/S0143385700002649
[4] Crainic, M., Fernandes, R. L., and Marcut, I., Lectures on Poisson Geometry, Lecture Notes (Universiteit Utrech, 2017).
[5] Egea, J.; Ferrer, S.; van der Meer, J. C., Bifurcations of the Hamiltonian fourfold \(1\) : \(1\) resonance with toroidal symmetry, J. Nonlinear Sci., 21, 835-874 (2011) · Zbl 1251.37055 · doi:10.1007/s00332-011-9102-5
[6] Ferrer, S.; Palacián, J.; Yanguas, P., Hamiltonian oscillators in \(1\):\(1\):\(1\) resonance: Normalization and integrability, J. Nonlinear Sci., 10, 145-174 (2000) · Zbl 0974.34034 · doi:10.1007/s003329910007
[7] Ferrer, S. and Garate, J., “On perturbed 3D elliptic oscillators: A case of critical inclination in galactic dynamics, new trends for Hamiltonian systems and celestial mechanics,” in Proceedings of the Conference, Mexico, 13-17 September 1994, Advanced Series in Nonlinear Dynamics Vol. 8, edited by E. A. Lacomba and J. Llibre (World Scientific, Singapore, 1996), p. 179. · Zbl 1138.70331
[8] Ferrer, S.; Hanßmann, H.; Palacián, J.; Yanguas, P., On perturbed oscillators in \(1\):\(1\):\(1\) resonance: The case of axially symmetric cubic potentials, J. Geom. Phys., 40, 320-369 (2002) · Zbl 1037.34031 · doi:10.1016/S0393-0440(01)00041-9
[9] Haller, G.; Wiggins, S., Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Physica D, 90, 319-365 (1996) · Zbl 0894.70014 · doi:10.1016/0167-2789(95)00247-2
[10] Hanßmann, H., Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems—Results and Examples, Lecture Notes in Mathematics Vol. 1893 (Springer, 2007). · Zbl 1120.37036
[11] Hanßmann, H.; Mazrooei-Sebdani, R.; Verhulst, F., Indag. Math. · Zbl 1460.70019 · doi:10.1016/j.indag.2020.06.003
[12] Holm, D. D.; Lynch, P., Stepwise precession of the resonant swinging spring, SIAM J. Appl. Dyn. Syst., 1, 44-64 (2002) · Zbl 1140.37350 · doi:10.1137/S1111111101388571
[13] Mazrooei-Sebdani, R.; Yousefi, Z., Discrete Continuous Dyn. Syst. Ser. B · Zbl 1471.37060 · doi:10.3934/dcdsb.2020255
[14] Marchesiello, A.; Pucacco, G., Equivariant singularity analysis of the \(2\):\(2\) resonance, Nonlinearity, 27, 43-66 (2014) · Zbl 1418.37091 · doi:10.1088/0951-7715/27/1/43
[15] Meyer, K. R. and Offin, D. C., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 3rd ed., Applied Mathematical Sciences Vol. 90 (Springer, New York, 2017). · Zbl 1372.70002
[16] Olver, P. J., Applications of Lie Groups to Differentional Equations, Graduate Texts in Mathematics (Springer-Verlag, New York, 1993). · Zbl 0785.58003
[17] Saaf, A. F., A formal third integral of motion in a nearly spherical stellar system, Astrophys. J., 154, 483-498 (1968) · Zbl 0187.22503 · doi:10.1086/149776
[18] Sadovski, D. A.; Zhilinski, B. I., Hamiltonian systems with detuned \(1\):\(1\):\(2\) resonance: Manifestation of bidromy, Ann. Phys., 322, 164-200 (2007) · Zbl 1106.81082 · doi:10.1016/j.aop.2006.09.011
[19] Sanders, J. A., Verhulst, F., and Murdock, J., Averaging Methods in Nonlinear Dynamical Systems, 2nd ed., Appl. Math. Sciences Vol. 59 (Springer, 2007). · Zbl 1128.34001
[20] van der Aa, E., First order resonances in three-degrees-of-freedom systems, Cel. Mech., 31, 163-191 (1983) · Zbl 0547.70018 · doi:10.1007/BF01686817
[21] Verhulst, F., Discrete symmetric dynamical systems at the main resonances with applications to axi-symmetric galaxies, Phil. Trans. R. Soc., 290, 435-465 (1979) · Zbl 0394.34039 · doi:10.1098/rsta.1979.0006
[22] van der Aa, E. and Sanders, J. A., “The \(1\):\(2\):\(1\)-resonance, its periodic orbits and integrals,” in Asymptotic Analysis: From Theory to Application, Lecture Notes in Mathematics Vol. 711, edited by F. Verhulst (Springer, Berlin, 1979), pp. 187-208. · Zbl 0407.58027
[23] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed., Texts in Applied Mathematics (Springer, 2003). · Zbl 1027.37002
[24] de Zeeuw, T., Motion in the core of a triaxial potential, Mon. Not. R. Astron. Soc., 215, 731-760 (1985) · Zbl 0587.70010 · doi:10.1093/mnras/215.4.731
[25] de Zeeuw, T., “Dynamical models for axisymmetric and triaxial galaxies,” in Structure and Dynamics of Elliptical Galaxies, IAU Symposium No. 127, edited by T. de Zeeuw and D. Reidel (Springer, 1987), pp. 271-290.
[26] de Zeeuw, T.; Franx, M., Structure and dynamics of elliptical galaxies, Annu. Rev. Astron. Astrophys., 29, 239-274 (1991) · doi:10.1146/annurev.aa.29.090191.001323
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.