×

Hamiltonian systems with detuned 1:1:2 resonance: manifestation of bidromy. (English) Zbl 1106.81082

Summary: We consider a generalization of the 1:1:2 resonant swing-spring [see H. Dullin, A. Giacobbe and R. H. Cushman, Physica D 190, No. 1–2, 15–37 (2004; Zbl 1098.70520)] which is suggested both by the symmetries of this system and by its physical and in particular molecular realizations [see R. H. Cushman, H. R. Dullin, A. Giacobbe, D. D. Holm, M. Joyeux, P. Lynch, D. A. Sadovskiĭ and B.I. Zhilinskiĭ, Phys. Rev. Lett. 93, 024302-1–024302-4 (2004)]. Our generic integrable system is detuned off the exact Fermi resonance 1:2. The three-dimensional (3D) image of its energy–momentum map \(\mathcal{EM}\) consists either of two or three qualitatively different non-intersecting 3D regions: a regular region at low vibrational excitation, a region with monodromy similar to that studied for the exact resonance, and in some cases–an intermediate region in which the 3D set of regular values of \(\mathcal{EM}\) is partially self-overlapping while remaining connected. In the presence of this latter region, the system has an interesting property which we called bidromy. We analyze monodromy and bidromy for a concrete integrable classical Hamiltonian system of three coupled oscillators and for its quantum analog. We also show that the bifurcation involved in the transition from the regular region to the region with monodromy can be regarded as a special resonant equivariant analog of the Hamiltonian Hopf bifurcation.

MSC:

81V55 Molecular physics
35Q55 NLS equations (nonlinear Schrödinger equations)
34M35 Singularities, monodromy and local behavior of solutions to ordinary differential equations in the complex domain, normal forms
58K10 Monodromy on manifolds
70K30 Nonlinear resonances for nonlinear problems in mechanics

Citations:

Zbl 1098.70520
Full Text: DOI

References:

[1] Lynch, P.; Houghton, C., Physica D, 190, 38-62 (2004) · Zbl 1098.70540
[2] Holm, D. D.; Lynch, P., SIAM J. Applied Dyn. Syst., 1, 44-64 (2002) · Zbl 1140.37350
[3] Dullin, H.; Giacobbe, A.; Cushman, R. H., Physica D, 190, 15-37 (2004) · Zbl 1098.70520
[4] Giacobbe, A.; Cushman, R. H.; Sadovskií, D. A.; Zhilinskií, B. I., J. Math. Phys., 45, 12, 5076-5100 (2004) · Zbl 1064.81022
[5] Duistermaat, J. J., Comm. Pure Appl. Math., 33, 687-706 (1980) · Zbl 0439.58014
[6] Bates, L. M.; Cushman, R. H., Global Aspects of Classical Integrable Systems (1997), Birkhäuser: Birkhäuser Basel · Zbl 0882.58023
[7] Vũ Ngọc, S., Comm. Math. Phys., 203, 465-479 (1999) · Zbl 0981.35015
[8] Cushman, R. H.; Duistermaat, J. J., Bull. Am. Math. Soc., 19, 475-479 (1988) · Zbl 0658.58039
[9] Zhilinskii, B. I., (Monastyrsky, M., Topology in Condensed Matter, vol. 150 (2006), Springer Series in Solid State Sciences), 165-186 · Zbl 1161.82365
[10] Cushman, R. H.; Dullin, H. R.; Giacobbe, A.; Holm, D. D.; Joyeux, M.; Lynch, P.; Sadovskií, D. A.; Zhilinskií, B. I., Phys. Rev. Lett., 93, 024302-1-024302-4 (2004)
[11] Sanrey, M.; Joyeux, M.; Sadovskii, D., J. Chem. Phys., 124, 074318-1-074318-12 (2006)
[12] Cooper, C. D.; Child, M. S., Phys. Chem. Chem. Phys., 7, 2731-2739 (2005), <ce:cross-refs refid=“fig7 fig8”>Figs. 7 and 8 of this paper are corrected in [13]
[13] M. Child, Adv. Chem. Phys. (in press).; M. Child, Adv. Chem. Phys. (in press).
[14] van der Meer, J. C., The Hamiltonian Hopf Bifurcation. The Hamiltonian Hopf Bifurcation, Ser. Lect. Notes Math., vol. 1160 (1985), Springer: Springer Berlin · Zbl 0585.58019
[15] Cushman, R. H.; van der Meer, J. C., Lect. Notes Math., 1416, 26-38 (1991)
[16] Sadovskií, D. A.; Cushman, R. H., Physica D, 142, 166-196 (2000) · Zbl 0985.37104
[17] Hanßmann, H.; van der Meer, J. C., J. Dyn. Diff. Eq., 14, 675-695 (2002) · Zbl 1035.37038
[18] Efstathiou, K.; Sadovskií, D. A.; Cushman, R. H., Proc. Roy. Soc. (London) Ser. A, 459, 2040, 2997-3019 (2003) · Zbl 1042.37038
[19] Efstathiou, K.; Sadovskií, D. A., Nonlinearity, 17, 2, 415-446 (2004) · Zbl 1064.37044
[20] Efstathiou, K.; Cushman, R. H.; Sadovskií, D. A., Physica D, 194, 250-274 (2004) · Zbl 1059.37069
[21] Waalkens, H.; Junge, A.; Dullin, H. R., J. Phys. A. Math. Gen., 36, L307-L314 (2003) · Zbl 1038.81069
[22] Waalkens, H.; Richter, P. H.; Dullin, H. R., Physica D, 196, 265-310 (2004) · Zbl 1098.70515
[23] K. Efstathiou, Metamorphoses of Hamiltonian systems with symmetries, Ser. Lect. Notes Math., vol. 1864, Springer, Berlin, 2004.; K. Efstathiou, Metamorphoses of Hamiltonian systems with symmetries, Ser. Lect. Notes Math., vol. 1864, Springer, Berlin, 2004. · Zbl 1069.70002
[24] Nekhoroshev, N. N.; Sadovskií, D. A.; Zhilinskií, B. I., Ann. Henri Poincaré, 7, 1099-1211 (2006) · Zbl 1100.70010
[25] Joyeux, M.; Sadovskií, D. A.; Tennyson, J., Chem. Phys. Lett., 382, 3-4, 439-442 (2003)
[26] Efstathiou, K.; Joyeux, M.; Sadovskií, D. A., Phys. Rev. A, 69, 032504-1-032504-15 (2004)
[27] Joyeux, M.; Farantos, S. C.; Schinke, R., J. Phys. Chem. A, 106, 5407-5421 (2002)
[28] Zhou, C.; Xie, D.; Chen, R.; Yan, G.; Guo, H.; Tyng, V.; Kellman, M., Spectrochim. Acta A, 58, 727-746 (2002)
[29] Joyeux, M.; Grebenschikov, S. Yu.; Bredendeck, J.; Schinke, R.; Farantos, S., Adv. Chem. Phys., 130, Part A, 267-302 (2005)
[30] Nȇkhoroshev, N. N.; Sadovskií, D. A.; Zhilinskií, B. I., C. R. Acad. Sci. Paris, Ser. I, 335, 985-988 (2002) · Zbl 1017.81009
[31] Sadovskií, D. A.; Zhilinskií, B. I., Mol. Phys., 104, 2595-2615 (2006)
[32] Bolsinov, A. V.; Fomenko, A. T., Integrable Hamiltonian Systems. Geometry, Topology, Classification (2004), Chapman & Hall/CRC: Chapman & Hall/CRC London/Boca Raton, FL · Zbl 0908.58026
[33] Hodge, W. V.D.; Pedoe, D., Methods of Algebraic Geometry, vol. 1 (1953), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0055.38705
[34] Cox, D.; Little, J.; O’Shea, D., Using Algebraic geometry (1998), Springer: Springer New York · Zbl 0920.13026
[35] Sturmfels, B., Solving Systems of Polynomial Equations (2002), University of California: University of California AMS · Zbl 1101.13040
[36] D. Sugny, H. Jauslin, M. Joyeux, (unpublished).; D. Sugny, H. Jauslin, M. Joyeux, (unpublished).
[37] A. Giacobbe, (unpublished).; A. Giacobbe, (unpublished).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.