×

Limiting absorption principle and well-posedness for the time-harmonic Maxwell equations with anisotropic sign-changing coefficients. (English) Zbl 1451.35207

The authors study the limiting absorption principle and the well-posedness of Maxwell equations \(\nabla \times E = i\omega \mu H\) and \(\nabla \times H =- i\omega \varepsilon E+J\) in the space divided into a smooth domain \(D\) and \(D^-\), the complement of its closure to \(\mathbb R^3\). The permittivity \(\varepsilon\) and the permeability \(\mu\) are \((3\times 3)\) real, symmetric, uniformly elliptic matrix-valued functions in \(D\). The matrices have the form \(\varepsilon = \varepsilon^-+i \delta I\) and \(\mu=\mu^- +i \delta I\) in \(D^-\) where \(-\varepsilon^-\) and \(-\mu^-\) have the same properties as \(\varepsilon\), \(I\) is the identity matrix, \(\delta>0\). The authors obtain general conditions for \(\varepsilon\) and \(\mu\) for which the limiting absorption principle and the well-posedness hold. Applications to the stability of electromagnetic fields of negative-index metamaterials are discussed.

MSC:

35Q61 Maxwell equations
78A25 Electromagnetic theory (general)
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Commun. Pure Appl. Math., 12, 623-727 (1959) · Zbl 0093.10401 · doi:10.1002/cpa.3160120405
[2] Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Commun. Pure Appl. Math., 17, 35-92 (1964) · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[3] Ammari, H.; Ciraolo, G.; Kang, H.; Lee, H.; Milton, GW, Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., 218, 667-692 (2013) · Zbl 1282.78004 · doi:10.1007/s00205-012-0605-5
[4] Ball, J.; Capdeboscq, Y.; Tsering-Xiao, B., On uniqueness for time harmonic anisotropic Maxwell’s equations with piecewise regular coefficients, Math. Models Methods Appl. Sci., 22, 1250036 (2012) · Zbl 1256.35153 · doi:10.1142/S0218202512500364
[5] Dhia, A. S Bonnet-Ben; Chesnel, L.; Ciarlet, P., T-coercivity for scalar interface problems between dielectrics and metamaterials, ESAIM Math. Model. Numer. Anal., 46, 1363-1387 (2012) · Zbl 1276.78008 · doi:10.1051/m2an/2012006
[6] Dhia, A. S Bonnet-Ben; Chesnel, L.; Ciarlet, P., T-coercivity for the Maxwell problem with sign-changing coefficients, Commun. Partial Diffe. Equ., 39, 1007-1031 (2014) · Zbl 1297.35229 · doi:10.1080/03605302.2014.892128
[7] Dhia, A. S Bonnet-Ben; Chesnel, L.; Claeys, X., Radiation condition for a non-smooth interface between a dielectric and a metamaterial, Math. Models Methods Appl. Sci., 23, 1629-1662 (2013) · Zbl 1283.35135 · doi:10.1142/S0218202513500188
[8] Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory. In: Applied Mathematical Sciences, 2nd edn, vol. 98. Springer, Berlin (1998). xii+334 pp · Zbl 0893.35138
[9] Costabel, M.; Stephan, E., A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl., 106, 367-413 (1985) · Zbl 0597.35021 · doi:10.1016/0022-247X(85)90118-0
[10] Csató, G.; Dacorogna, B.; Kneuss, O.; Brezis, H., The pullback equation for differential forms, Progress in Nonlinear Differential Equations and their Applications (2012), New York: Birkhäuser/Springer, New York · Zbl 1247.58003
[11] Dacorogna, B.: Poincaré Lemma in a Star Shaped Domain, unpublished note (2016)
[12] Girault, V.; Raviart, PA, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms (1986), Berlin: Springer-Verlag, Berlin · Zbl 0585.65077
[13] Kang, H.; Lim, M.; Yu, S., Spectral resolution of the Neumann-Poincaré operator on intersecting disks and analysis of plasmon resonance, Arch. Ration. Mech. Anal., 226, 83-115 (2017) · Zbl 1386.35285 · doi:10.1007/s00205-017-1129-9
[14] Kohn, RV; Lu, J.; Schweizer, B.; Weinstein, MI, A variational perspective on cloaking by anomalous localized resonance, Commun. Math. Phys., 328, 1-27 (2014) · Zbl 1366.78002 · doi:10.1007/s00220-014-1943-y
[15] Leis, R., Initial-Boundary Value Problems in Mathematical Physics (1986), Chichester: Wiley, Chichester · Zbl 0599.35001
[16] Milton, G. W.; Nicorovici, N-A P., On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A, 462, 3027-3059 (2006) · Zbl 1149.00310
[17] Monk, P.: Finite element methods for Maxwell’s equations. In: Golub, G.H., Schwab, Ch., Light, W.A., Süli, E. (eds.) Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003). xiv+450 pp. · Zbl 1024.78009
[18] Nguyen, H-M, Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients, Trans. Am. Math. Soc., 367, 6581-6595 (2015) · Zbl 1321.35012 · doi:10.1090/S0002-9947-2014-06305-8
[19] Nguyen, H-M, Superlensing using complementary media, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32, 471-484 (2015) · Zbl 1316.35275 · doi:10.1016/j.anihpc.2014.01.004
[20] Nguyen, H-M, Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime, J. Eur. Math. Soc.: JEMS, 17, 1327-1365 (2015) · Zbl 1341.35031 · doi:10.4171/JEMS/532
[21] Nguyen, H-M, Cloaking using complementary media in the quasistatic regime, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 1509-1518 (2016) · Zbl 1375.35113 · doi:10.1016/j.anihpc.2015.06.004
[22] Nguyen, H-M, Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients, J. Math. Pures Appl., 106, 342-374 (2016) · Zbl 1343.35074 · doi:10.1016/j.matpur.2016.02.013
[23] Nguyen, H-M, Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object, SIAM J. Math. Anal., 49, 3208-3232 (2017) · Zbl 1375.78019 · doi:10.1137/16M1086017
[24] Nguyen, H-M, Superlensing using complementary media and reflecting complementary media for electromagnetic waves, Adv. Nonlinear Anal., 7, 449-467 (2018) · Zbl 1404.35428 · doi:10.1515/anona-2017-0146
[25] Nguyen, H-M, Cloaking using complementary media for electromagnetic waves, ESAIM Control Optim. Calc. Var., 25, 29 (2019) · Zbl 1437.35649 · doi:10.1051/cocv/2017078
[26] Nguyen, H-M, Cloaking via anomalous localized resonance for doubly complementary media in the finite frequency regime, J. Anal. Math., 138, 157-184 (2019) · Zbl 1428.78017 · doi:10.1007/s11854-019-0024-8
[27] Nguyen, H.-M.: The invisibility via anomalous localized resonance of a source for electromagnetic waves. Res. Math. Sci. 6 Paper No. 32, 22 pp (2019) · Zbl 1425.35185
[28] Nguyen, H-M; Nguyen, HL, Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations, Trans. Am. Math. Soc. Ser. B, 2, 93-112 (2015) · Zbl 1336.35126 · doi:10.1090/btran/7
[29] Nguyen, H.-M., Nguyen, Q.-H.: Discreteness of interior transmission eigenvalues revisited. Calc. Var. Partial Differ. Equ. 56, Art. 51 (2017) · Zbl 1375.35289
[30] Nguyen, T.; Wang, J-N, Quantitative uniqueness estimate for the Maxwell system with Lipschitz anisotropic media, Proc. Am. Math. Soc., 140, 595-605 (2012) · Zbl 1235.35055 · doi:10.1090/S0002-9939-2011-11137-7
[31] Nicorovici, NA; McPhedran, RC; Milton, GM, Optical and dielectric properties of partially resonant composites, Phys. Rev. B, 49, 8479-8482 (1994) · doi:10.1103/PhysRevB.49.8479
[32] Ola, P., Remarks on a transmission problem, J. Math. Anal. Appl., 196, 639-658 (1995) · Zbl 0848.35148 · doi:10.1006/jmaa.1995.1431
[33] Shelby, RA; Smith, DR; Schultz, S., Experimental verification of a negative index of refraction, Science, 292, 77-79 (2001) · doi:10.1126/science.1058847
[34] Protter, MH, Unique continuation for elliptic equations, Trans. Am. Math. Soc., 95, 81-91 (1960) · Zbl 0094.07901 · doi:10.1090/S0002-9947-1960-0113030-3
[35] Veselago, VG, The electrodynamics of substances with simultaneously negative values of \(\varepsilon\) and \(\mu \), Usp. Fiz. Nauk, 92, 517-526 (1964) · doi:10.3367/UFNr.0092.196707d.0517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.