×

Asymptotic behavior of solutions to the Helmholtz equations with sign changing coefficients. (English) Zbl 1321.35012

Summary: This paper is devoted to the study of the behavior of the unique solution \( u_\delta \in H^{1}_{0}(\Omega )\), as \( \delta \to 0\), to the equation \[ \mathrm {div}(s_\delta A \nabla u_{\delta }) + k^2 s_0 \Sigma u_{\delta } = s_0 f\text{ in } \Omega , \] where \( \Omega \) is a smooth connected bounded open subset of \( \mathbb{R}^d\) with \( d=2\) or 3, \( f \in L^2(\Omega )\), \( k\) is a non-negative constant, \( A\) is a uniformly elliptic matrix-valued function, \( \Sigma \) is a real function bounded above and below by positive constants, and \( s_\delta \) is a complex function whose real part takes the values \( 1\) and \( -1\) and whose imaginary part is positive and converges to 0 as \( \delta \) goes to 0. This is motivated from a result of N. A. Nicorovici, R. C. McPhedran, and G. W. Milton [“Optical and dielectric properties of partially resonant composites”, Phys. Rev. B 49, 8479–8482 (1994)]; another motivation is the concept of complementary media. After introducing the reflecting complementary media, complementary media generated by reflections, we characterize \( f\) for which \( \| u_\delta \| _{H^1(\Omega )}\) remains bounded as \( \delta \) goes to 0. For such an \( f\), we also show that \( u_\delta \) converges weakly in \( H^1(\Omega )\) and provide a formula to compute the limit.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35B40 Asymptotic behavior of solutions to PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
78A40 Waves and radiation in optics and electromagnetic theory
78M35 Asymptotic analysis in optics and electromagnetic theory

References:

[1] Alessandrini, Giovanni, Strong unique continuation for general elliptic equations in 2D, J. Math. Anal. Appl., 386, 2, 669-676 (2012) · Zbl 1308.35079 · doi:10.1016/j.jmaa.2011.08.029
[2] Ammari, Habib; Ciraolo, Giulio; Kang, Hyeonbae; Lee, Hyundae; Milton, Graeme W., Spectral theory of a Neumann-Poincar\'e-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., 208, 2, 667-692 (2013) · Zbl 1282.78004 · doi:10.1007/s00205-012-0605-5
[3] Bouchitt{\'e}, Guy; Schweizer, Ben, Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., 63, 4, 437-463 (2010) · Zbl 1241.78001 · doi:10.1093/qjmam/hbq008
[4] Brezis, Ha{\`“{\i }}m, Analyse fonctionnelle, Collection Math\'”ematiques Appliqu\'ees pour la Ma\^\i trise. [Collection of Applied Mathematics for the Master’s Degree], xiv+234 pp. (1983), Masson, Paris · Zbl 0511.46001
[5] [BrunoLintner07] O. P. Bruno and S. Lintner, Superlens-cloaking of small dielectric bodies in the quasistatic regime, J. Appl. Phys. 102 (2007), 12452.
[6] [KohnLu] R. V. Kohn, J. Lu, B. Schweize, and M. I. Weinstein, A variational perspective on cloaking by anomalous localized resonance, (2013), http://arxiv.org/abs/1210.4823.
[7] [LaiChenZhangChanComplementary] Y. Lai, H. Chen, Z. Zhang, and C. T. Chan, Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett. 102 (2009), 093901.
[8] [LaiNgChenHanXiaoZhangChanIllusion] Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z. Zhang, and C. T. Chan, Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett. 102 (2009), 253902.
[9] [MinhLoc] H. M. Nguyen and H. L. Nguyen, Complete resonance and localized resonance in plasmonic structures, (2013), http://arxiv.org/pdf/1310.3633.pdf. · Zbl 1320.78005
[10] [Ng-Negative-Cloaking] H. M. Nguyen, Cloaking using complementary media in the quasistatic regime, (2013), http://arxiv.org/pdf/1310.5483.pdf.
[11] Milton, Graeme W.; Nicorovici, Nicolae-Alexandru P., On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462, 2074, 3027-3059 (2006) · Zbl 1149.00310 · doi:10.1098/rspa.2006.1715
[12] [Milton-folded] G. W. Milton, N. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, Solutions in folded geometries, and associated cloaking due to anomalous resonance, New J. Phys. 10 (2008), 115021.
[13] Milton, G. W.; Nicorovici, N. P.; McPhedran, R. C.; Podolskiy, V. A., A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461, 2064, 3999-4034 (2005) · Zbl 1255.78002 · doi:10.1098/rspa.2005.1570
[14] [NicoroviciMcPhedranMilton94] N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, Optical and dielectric properties of partially resonant composites, Phys. Rev. B 49 (1994), 8479-8482.
[15] [PendryNegative] J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85 (2000), 3966-3969.
[16] [PendryCylindricalLenses] \bysame, Perfect cylindrical lenses, Optics Express 1 (2003), 755-760.
[17] Protter, M. H., Unique continuation for elliptic equations, Trans. Amer. Math. Soc., 95, 81-91 (1960) · Zbl 0094.07901
[18] [PendryRamakrishna0] S. A. Ramakrishna and J. B. Pendry, Focusing light using negative refraction, J. Phys.: Condens. Matter 15 (2003), 6345.
[19] [PendryRamakrishna] \bysame, Spherical perfect lens: Solutions of Maxwell’s equations for spherical geometry, Phys. Rev. B 69 (2004), 115115.
[20] [ShelbySmithSchultz] R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science 292 (2001), 77-79.
[21] [SmithPadillaVierNemat-NasserSchultz] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84 (2000), 4184-4187.
[22] [Veselago] V. G. Veselago, The electrodynamics of substances with simultaneously negative values of \(\varepsilon\) and \(\mu \), Usp. Fiz. Nauk 92 (1964), 517-526.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.