×

Network-based passive estimation for switched complex dynamical networks under persistent dwell-time with limited signals. (English) Zbl 1450.93078

Summary: In this paper, the state estimation issue for a set of switched complex dynamic networks affected by quantization is studied, in which the switching process is assumed to follow persistent dwell-time switching regulation. Thereinto, the switching regulation aforementioned describes the switchings among different parameters on complex dynamic networks. Meanwhile, for the network-based model, in the communication channels from the sensor to the estimator, quantization is inevitable to be taken into consideration. To track partially inaccessible information in the target system, a state estimator is thoroughly reconstructed. Intensive attention is that a set of sufficient conditions can be derived by using some simple matrix transformation methods, linear matrix inequality and Lyapunov stability theory, to further assure the error dynamic obtained is globally uniformly exponentially stable and meets passive property. The serviceability of the state estimator gains solved is finally verified and the effectiveness of the proposed design approach is further illustrated.

MSC:

93E10 Estimation and detection in stochastic control theory
93E15 Stochastic stability in control theory
93D23 Exponential stability
93B70 Networked control
Full Text: DOI

References:

[1] Albert, R.; Jeong, H.; Barabási, A.-L., Diameter of the world-wide web, Nature, 401, 6749, 130-131 (1999)
[2] Rakkiyappan, R.; Sasirekha, R.; Lakshmanan, S.; Lim, C. P., Synchronization of discrete-time Markovian jump complex dynamical networks with random delays via non-fragile control, J. Frankl. Inst., 353, 16, 4300-4329 (2016) · Zbl 1347.93237
[3] in press
[4] Wu, T.; Huang, X.; Chen, X.; Wang, J., Sampled-data H_∞ exponential synchronization for delayed semi-Markov jump CDNs: a looped-functional approach, Appl. Math. Comput., 377, 125156 (2020) · Zbl 1508.93326
[5] Watts, D. J.; Strogatz, S. H., Collective dynamics of small-worldnetworks, Nature, 393, 6684, 440 (1998) · Zbl 1368.05139
[6] Huang, C.; Ho, D. W.; Lu, J., Partial-information-based synchronization analysis for complex dynamical networks, J. Frankl. Inst., 352, 9, 3458-3475 (2015) · Zbl 1395.93090
[7] Hu, C.; He, H.; Jiang, H., Synchronization of complex-valued dynamic networks with intermittently adaptive coupling: a direct error method, Automatica, 112, 108675 (2020) · Zbl 1430.93117
[8] Lu, J.; Sun, L.; Liu, Y.; Ho, D. W.; Cao, J., Stabilization of boolean control networks under aperiodic sampled-data control, SIAM J. Control Optim., 56, 6, 4385-4404 (2018) · Zbl 1403.93124
[9] Zhou, Y.; Wan, X.; Huang, C.; Yang, X., Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control, Appl. Math. Comput., 376, 125157 (2020) · Zbl 1475.93115
[10] Jin, X.; Zhao, X.; Yu, J.; Wu, X.; Chi, J., Adaptive fault-tolerant consensus for a class of leader-following systems using neural network learning strategy, Neural Netw., 121, 474-483 (2020) · Zbl 1443.93126
[11] Shanmugam, L.; Mani, P.; Rajan, R.; Joo, Y. H., Adaptive synchronization of reaction-diffusion neural networks and its application to secure communication, IEEE Trans. Cybern., 50, 3, 911-922 (2020)
[12] Liu, Y.; Wang, Z.; Liang, J.; Liu, X., Synchronization and state estimation for discrete-time complex networks with distributed delays, IEEE Trans. Syst. Man Cybern. Part B, 38, 5, 1314-1325 (2008)
[13] Wang, X.; Xia, J.; Wang, J.; Wang, Z.; Wang, J., Reachable set estimation for Markov jump LPV systems with time delays, Appl. Math. Comput., 376, 125117 (2020) · Zbl 1475.60137
[14] in press · Zbl 1447.93020
[15] Xing, M.; Xia, J.; Huang, X.; Shen, H., On dissipativity-based filtering for discrete-time switched singular systems with sensor failures: a persistent dwell-time scheme, IET Control Theory Appl., 13, 12, 1814-1822 (2019) · Zbl 1432.93219
[16] Wang, J.; Shen, L.; Xia, J.; Wang, Z.; Chen, X., Asynchronous dissipative filtering for nonlinear jumping systems subject to fading channels, J. Frankl. Inst., 357, 589-605 (2020) · Zbl 1429.93391
[17] Shen, L.; Yang, X.; Wang, J.; Xia, J., Passive gain-scheduling filtering for jumping linear parameter varying systems with fading channels based on the hidden Markov model, Proc. Inst. Mech. Eng. Part I-J. Syst. Control Eng., 233, 1, 67-79 (2019)
[18] Dai, M.; Xia, J.; Park, J. H.; Huang, X.; Shen, H., Asynchronous dissipative filtering for Markov jump discrete-time systems subject to randomly occurring distributed delays, J. Frankl. Inst., 356, 4, 2395-2420 (2019) · Zbl 1409.93067
[19] in press
[20] Li, J.; Pan, K.; Zhang, D.; Su, Q., Robust fault detection and estimation observer design for switched systems, Nonlinear Anal. Hybrid. Syst., 34, 30-42 (2019) · Zbl 1434.93015
[21] Su, Q.; Fan, Z.; Lu, T.; Long, Y.; Li, J., Fault detection for switched systems with all modes unstable based on interval observer, Inf. Sci., 517, 167-182 (2020) · Zbl 1461.93124
[22] Wang, Y.; Xia, J.; Wang, Z.; Shen, H., Design of a fault-tolerant output-feedback controller for thickness control in cold rolling mills, Appl. Math. Comput., 369, 124841 (2020) · Zbl 1433.93150
[23] Shi, K.; Wang, J.; Tang, Y.; Zhong, S., Reliable asynchronous sampled-data filtering of T-S fuzzy uncertain delayed neural networks with stochastic switched topologies, Fuzzy Sets Syst., 381, 1-25 (2020) · Zbl 1464.93081
[24] Shi, K.; Tang, Y.; Zhong, S.; Yin, C.; Huang, X.; Wang, W., Nonfragile asynchronous control for uncertain chaotic Lurie network systems with bernoulli stochastic process, Int. J. Robust Nonlinear Control, 28, 5, 1693-1714 (2018) · Zbl 1390.93735
[25] in press
[26] Mathiyalagan, K.; Park, J. H.; Sakthivel, R., Observer-based dissipative control for networked control systems: a switched system approach, Complexity, 21, 2, 297-308 (2015)
[27] Hespanha, J. P., Uniform stability of switched linear systems: extensions of LaSalle’s invariance principle, IEEE Trans. Autom. Control, 49, 4, 470-482 (2004) · Zbl 1365.93348
[28] Huang, Z.; Xia, J.; Wang, J.; Wei, Y.; Wang, Z.; Wang, J., Mixed H_∞/\( l_2 - l_\infty\) state estimation for switched genetic regulatory networks subject to packet dropouts: a persistent dwell-time switching mechanism, Appl. Math. Comput., 355, 198-212 (2019) · Zbl 1428.93078
[29] Shi, K.; Zhong, S.; Tang, Y.; Cheng, J., Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control, Fuzzy Sets Syst., 394, 40-64 (2020) · Zbl 1452.93021
[30] Xing, M.; Xia, J.; Wang, J.; Meng, B.; Shen, H., Asynchronous H_∞ filtering for nonlinear persistent dwell-time switched singular systems with measurement quantization, Appl. Math. Comput., 362, 124578 (2019) · Zbl 1433.93035
[31] Li, Q.; Shen, B.; Wang, Z.; Alsaadi, F. E., Event-triggered H_∞ state estimation for state-saturated complex networks subject to quantization effects and distributed delays, J. Frankl. Inst., 355, 5, 2874-2891 (2018) · Zbl 1393.93122
[32] Pan, R.; Tan, Y.; Du, D.; Fei, S., Adaptive event-triggered synchronization control for complex networks with quantization and cyber-attacks, Neurocomputing, 382, 249-258 (2020)
[33] Hu, X.; Xia, J.; Wang, Z.; Song, X.; Shen, H., Robust distributed state estimation for Markov coupled neural networks under imperfect measurements, J. Frankl. Inst., 357, 4, 2420-2436 (2020) · Zbl 1451.93382
[34] Lee, T. H.; Park, J. H.; Lee, S.-M.; Kwon, O.-M., Robust synchronisation of chaotic systems with randomly occurring uncertainties via stochastic sampled-data control, Int. J. Control, 86, 1, 107-119 (2013) · Zbl 1278.93159
[35] Men, Y.; Huang, X.; Wang, Z.; Shen, H.; Chen, B., Quantized asynchronous dissipative state estimation of jumping neural networks subject to occurring randomly sensor saturations, Neurocomputing, 291, 207-214 (2018)
[36] Montestruque, L. A.; Antsaklis, P. J., Static and dynamic quantization in model-based networked control systems, Int. J. Control, 80, 1, 87-101 (2007) · Zbl 1112.68006
[37] Zhang, L.; Zhu, Y.; Shi, P.; Lu, Q., Time-dependent Switched Discrete-time Linear Systems: Control and Filtering (2016), Springer · Zbl 1356.93003
[38] Xiang, W.; Xiao, J., Stabilization of switched continuous-time systems with all modes unstable via dwell time switching, Automatica, 50, 3, 940-945 (2014) · Zbl 1298.93283
[39] Yuan, S.; Zhang, L.; De Schutter, B.; Baldi, S., A novel Lyapunov function for a non-weighted l_2 gain of asynchronously switched linear systems, Automatica, 87, 310-317 (2018) · Zbl 1378.93111
[40] in press
[41] Wang, X.; Xia, J.; Wang, J.; Wang, J.; Wang, Z., Passive state estimation for fuzzy jumping neural networks with fading channels based on the hidden Markov model, Physica A, 535, 122437 (2019) · Zbl 07571233
[42] Dai, M.; Huang, Z.; Xia, J.; Meng, B.; Wang, J.; Shen, H., Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems, Appl. Math. Comput., 362, 124571 (2019) · Zbl 1433.93144
[43] Wang, Z.; Shen, L.; Xia, J.; Shen, H.; Wang, J., Finite-time non-fragile \(l_2 - l_\infty\) control for jumping stochastic systems subject to input constraints via an event-triggered mechanism, J. Franklin. Inst., 355, 14, 6371-6389 (2018) · Zbl 1398.93107
[44] Wang, J.; Huo, S.; Xia, J.; Park, J. H.; Huang, X.; Shen, H., Generalized dissipative asynchronous output feedback control for Markov jump repeated scalar non-linear systems with time-varying delay, IET Control Theory Appl., 13, 13, 2114-2121 (2019)
[45] Xia, Y.; Wang, J.; Meng, B.; Chen, X., Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems, Appl. Math. Comput., 379, 125225 (2020) · Zbl 1461.93421
[46] Fang, L.; Ma, L.; Ding, S.; Zhao, D., Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output constraint, Appl. Math. Comput., 358, 63-79 (2019) · Zbl 1428.93115
[47] in press
[48] in press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.