×

Asynchronous dissipative filtering for nonlinear jumping systems subject to fading channels. (English) Zbl 1429.93391

Summary: The fuzzy asynchronous dissipative filtering issue for Markov jump discrete-time nonlinear systems subject to fading channels is discussed in this paper, where the Rice fading model is employed to characterize the fading channels phenomenon in the system measurements for the first time. The attention is focused on developing an available asynchronous filter, which can ensure that the underlying error system is dissipative. In this regard, several important performances can be investigated conveniently by introducing adjustment matrices. By means of the stochastic analysis theory and the network control technique, some sufficient conditions for the solvability of the addressed problem are presented, simultaneously, the gains of the filter desired are determined correspondingly. An illustrative example is finally exploited to explain the utilizability of the developed approach.

MSC:

93E11 Filtering in stochastic control theory
93C55 Discrete-time control/observation systems
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man Cybern., 1, 116-132 (1985) · Zbl 0576.93021
[2] Chadli, M.; Karimi, H. R.; Shi, P., On stability and stabilization of singular uncertain Takagi-Sugeno fuzzy systems, J. Frankl. Inst., 351, 3, 1453-1463 (2014) · Zbl 1395.93459
[3] Ye, D.; Diao, N.-N.; Zhao, X.-G., Fault-tolerant controller design for general polynomial-fuzzy-model-based systems, IEEE Trans. Fuzzy Syst., 26, 2, 1046-1051 (2018)
[4] Wang, Y.; Shen, H.; Karimi, H. R.; Duan, D., Dissipativity-based fuzzy integral sliding mode control of continuous-time T-S fuzzy systems, IEEE Trans. Fuzzy Syst., 26, 3, 1164-1176 (2018)
[5] Chang, X. H.; Park, J. H.; Shi, P., Fuzzy resilient energy-to-peak filtering for continuous-time nonlinear systems, IEEE Trans. Fuzzy Syst., 25, 6, 1576-1588 (2017)
[6] Wang, Z.; Shen, L.; Xia, J.; Shen, H.; Wang, J., Finite-time non-fragile \(l_2 - l_\infty\) control for jumping stochastic systems subject to input constraints via an event triggered mechanism, J. Frankl. Inst., 355, 14, 6371-6389 (2018) · Zbl 1398.93107
[7] Wang, J.; Ru, T.; Xia, J.; Wei, Y.; Wang, Z., Finite-time synchronization for complex dynamic networks with semi-Markov switching topologies: An H_∞ event-triggered control scheme, Appl. Math. Comput., 356, 235-251 (2019) · Zbl 1428.93124
[8] Zhang, B.; Zheng, W. X.; Xu, S., Filtering of Markovian jump delay systems based on a new performance index, IEEE Trans. Circuits Syst. I, Reg. Papers, 60, 5, 1250-1263 (2013) · Zbl 1468.94288
[9] Dai, M.; Xia, J.; Huang, X.; Shen, H., Event-triggered passive synchronization for Markov jump neural networks subject to randomly occurring gain variations, Neurocomputing, 331, 403-411 (2019)
[10] Shen, H.; Li, F.; Yan, H.; Karimi, H. R.; Lam, H.-K., Finite-time event-triggered H_∞ control for T-S fuzzy Markov jump systems, IEEE Trans. Fuzzy Syst., 26, 5, 3122-3135 (2018)
[11] Dai, M.; Huang, Z.; Xia, J.; Meng, B.; Wang, J.; Shen, H., Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems, Appl. Math. Comput., 362, 124571 (2019) · Zbl 1433.93144
[12] Hu, X.; Xia, J.; Wei, Y.; Meng, B.; Shen, H., Passivity-based state synchronization for semi-Markov jump coupled chaotic neural networks with randomly occurring time delays, Appl. Math. Comput., 361, 32-41 (2019) · Zbl 1428.92010
[13] Park, J. H.; Shen, H.; Chang, X.-H.; Lee, T. H., Recent Advances in Control And Filtering of dynamic Systems With Constrained signals, (2018), Springer
[14] Shen, H.; Li, F.; Xu, S.; Sreeram, V., Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations, IEEE Trans. Autom. Control, 63, 8, 2709-2714 (2018) · Zbl 1423.93404
[15] Shen, H.; Men, Y.; Wu, Z.; Cao, J.; Lu, G., Network-based quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application, IEEE Trans. Circuits Syst. I, Reg. Papers, 66, 3, 1130-1140 (2019)
[16] Yan, H.; Zhang, H.; Yang, F.; Zhan, X.; Peng, C., Event-triggered asynchronous guaranteed cost control for Markov jump discrete-time neural networks with distributed delay and channel fading, IEEE Trans. Neural Netw. Learn. Syst., 29, 8, 3588-3598 (2018)
[17] Shen, L.; Yang, X.; Wang, J.; Xia, J., Passive gain-scheduling filtering for jumping linear parameter varying systems with fading channels based on the hidden Markov model, Proc. Inst. Mech. Eng. Part I J Syst. Control Eng., 233, 1, 67-79 (2019)
[18] An, K.; Lin, M.; Ouyang, J.; Zhu, W.-P., Secure transmission in cognitive satellite terrestrial networks, IEEE J. Selected Areas Commun., 34, 11, 3025-3037 (2016)
[19] Elia, N., Remote stabilization over fading channels, Syst. Control Lett., 54, 3, 237-249 (2005) · Zbl 1129.93498
[20] Ren, X.; Wu, J.; Johansson, K. H.; Shi, G.; Shi, L., Infinite horizon optimal transmission power control for remote state estimation over fading channels, IEEE Trans. Autom. Control, 63, 1, 85-100 (2018) · Zbl 1390.93803
[21] Digham, F. F.; Alouini, M.-S.; Simon, M. K., On the energy detection of unknown signals over fading channels, IEEE Trans. Commun., 55, 1, 21-24 (2007)
[22] Delle Monache, L.; Nipen, T.; Liu, Y.; Roux, G.; Stull, R., Kalman filter and analog schemes to postprocess numerical weather predictions, Mon. Weather Rev., 139, 11, 3554-3570 (2011)
[23] Arakawa, K., Median filter based on fuzzy rules and its application to image restoration, Fuzzy Sets Syst., 77, 1, 3-13 (1996)
[24] Shi, P.; Boukas, E.-K.; Agarwal, R. K., Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters, IEEE Trans. Autom. Control, 44, 8, 1592-1597 (1999) · Zbl 0986.93066
[25] Xing, M.; Xia, J.; Wang, J.; Meng, B.; Shen, H., Asynchronous H_∞ filtering for nonlinear persistent dwell-time switched singular systems with measurement quantization, Appl. Math. Comput., 362, 124578 (2019) · Zbl 1433.93035
[26] Huang, Z.; Xia, J.; Wang, J.; Wei, Y.; Wang, Z.; Wang, J., Mixed \(h_\infty / l_2 - l_\infty\) state estimation for switched genetic regulatory networks subject to packet dropouts: a persistent dwell-time switching mechanism, Appl. Math. Comput., 355, 198-212 (2019) · Zbl 1428.93078
[27] Wu, Z.-G.; Shi, P.; Su, H.; Chu, J., Asynchronous \(l_2 - l_\infty\) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities, Automatica, 50, 1, 180-186 (2014) · Zbl 1417.93317
[28] Dai, M.; Xia, J.; Park, J. H.; Huang, X.; Shen, H., Asynchronous dissipative filtering for Markov jump discrete-time systems subject to randomly occurring distributed delays, J. Frankl. Inst., 356, 4, 2395-2420 (2019) · Zbl 1409.93067
[29] Men, Y.; Huang, X.; Wang, Z.; Shen, H.; Chen, B., Quantized asynchronous dissipative state estimation of jumping neural networks subject to occurring randomly sensor saturations, Neurocomputing, 291, 207-214 (2018)
[30] Chu, Y.-C.; Glover, K., Bounds of the induced norm and model reduction errors for systems with repeated scalar nonlinearities, IEEE Trans. Autom. Control, 44, 3, 471-483 (1999) · Zbl 0958.93059
[31] Elia, N., Remote stabilization over fading channels, Syst. Control Lett., 54, 3, 237-249 (2005) · Zbl 1129.93498
[32] An, K.; Liang, T.; Zheng, G.; Yan, X.; Li, Y.; Chatzinotas, S., Performance limits of cognitive uplink FSS and terrestrial fs for ka-band, IEEE Trans. Aerospe. Electronic Syst. (2019)
[33] Lu, W.; An, K.; Liang, T., Robust beamforming design for sum secrecy rate maximization in multibeam satellite systems, IEEE Trans. Aerospace. Electronic Syst., 55, 3, 1568-1572 (2019)
[34] Tuan, H. D.; Apkarian, P.; Narikiyo, T.; Yamamoto, Y., Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE Trans. Fuzzy Syst., 9, 2, 324-332 (2001)
[35] Shen, H.; Huo, S.; Cao, J.; Huang, T., Generalized state estimation for Markovian coupled networks under round-robin protocol and redundant channels, IEEE Trans. Cybern., 49, 4, 1292-1301 (2019)
[36] Xia, J.; Gao, H.; Liu, M.; Zhuang, G.; Zhang, B., Non-fragile finite-time extended dissipative control for a class of uncertain discrete time switched linear systems, J. Frankl. Inst., 355, 6, 3031-3049 (2018) · Zbl 1395.93280
[37] Willems, J. C., Dissipative dynamical systems part I: General theory, Arch. Ration. Mech. Anal., 45, 5, 321-351 (1972) · Zbl 0252.93002
[38] Wang, J.; Huo, S.; Xia, J.; Park, J. H.; Huang, X.; Shen, H., Generalised dissipative asynchronous output feedback control for Markov jump repeated scalar non-linear systems with time-varying delay, IET Control Theory Appl., 13, 13, 2114-2121 (2019)
[39] Song, J.; Niu, Y.; Lam, J.; Lam, H.-K., Fuzzy remote tracking control for randomly varying local nonlinear models under fading and missing measurements, IEEE Trans. Fuzzy Syst., 26, 3, 1125-1137 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.