×

Statistical inference of semidefinite programming with multiple parameters. (English) Zbl 1449.90282

Summary: The parameters in the semidefinite programming problems generated by the average of a sample, may lead to the deviation of the optimal value and optimal solutions due to the uncertainty of the data. The statistical properties of estimates of the optimal value and the optimal solutions are given in this paper, when the estimated parameters are both in the objective function and in the constraints. This analysis is mainly based on the theory of the linear programming and the perturbation theory of the semidefinite programming.

MSC:

90C22 Semidefinite programming
90C31 Sensitivity, stability, parametric optimization
90C46 Optimality conditions and duality in mathematical programming
90C05 Linear programming
62F12 Asymptotic properties of parametric estimators
Full Text: DOI

References:

[1] F. Alizadeh; J. P. A. Haeberly; M. L. Overton, Complementarity and nondegeneracy in semidefinite programming, Mathematical Programming, 77, 111-128 (1997) · Zbl 0890.90141 · doi:10.1007/BF02614432
[2] H. Bauer, Measure and Integration Theory (Vol. 26), Walter de Gruyter, Berlin, 2001. · Zbl 0985.28001
[3] P. Billingsley, Probability and Measure (3rd ed.), Wiley series in probability and mathematical statistics, New York, 1995.
[4] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000. · Zbl 0966.49001
[5] M. W. Browne, Fitting the factor analysis model, ETS Research Report Series, 1967 (1967), i-43. · Zbl 0177.23601
[6] E. J. Candés; B. Recht, Exact matrix completion via convex optimization, Foundations of Computational mathematics, 9, 717-772 (2009) · Zbl 1219.90124 · doi:10.1007/s10208-009-9045-5
[7] M. Dür; B. Jargalsaikhan; G. Still, Genericity results in linear conic programming-a tour d’horizon, Mathematics of Operations Research, 42, 77-94 (2017) · Zbl 1359.90093 · doi:10.1287/moor.2016.0793
[8] H. Fischer, A History of the Central Limit Theorem: From Classical to Modern Probability Theory, Springer, New York, 2011. · Zbl 1226.60004
[9] A. Hald, A History of Mathematical Statistics from 1750 to 1930, Wiley, 1998. · Zbl 0979.01012
[10] J.-B. Hiriart-Urruty, Fundamentals of Convex Analysis, Springer-Verlag, New York, 2001. · Zbl 0998.49001
[11] H. B. Mann; A. Wald, On stochastic limit and order relationships, Annals of Mathematical Statistics, 14, 217-226 (1943) · Zbl 0063.03774 · doi:10.1214/aoms/1177731415
[12] A. Shapiro, Rank-reducibility of a symmetric matrix and sampling theory of minimum trace factor analysis, Psychometrika, 47, 187-199 (1982) · Zbl 0539.62065 · doi:10.1007/BF02296274
[13] A. Shapiro, Statistical inference of semidefinite programming, Mathematical Programming, (2018), 1-21, Available from: http://www.optimization-online.org/DB_HTML/2017/01/5842.html.
[14] A. Shapiro and K. Scheinberg, Duality and optimality conditions, in Handbook of Semidefinite Programming, Springer, Boston, MA, 27 (2000), 66-110. · Zbl 0957.90517
[15] A. Shapiro; J. M. F. Ten Berge, Statistical inference of minimum rank factor analysis, Psychometrika, 67, 79-94 (2002) · Zbl 1297.62137 · doi:10.1007/BF02294710
[16] E. Slutsky, Uber stochastische asymptoten und grenzwerte, Metron, 5, 3-89 (1925) · JFM 51.0380.03
[17] M. J. Todd, Semidefinite optimization, Acta Numerica, 10, 515-560 (2001) · Zbl 1105.65334 · doi:10.1017/S0962492901000071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.