×

Dynamics behavior for second-order neutral Clifford differential equations: inertial neural networks with mixed delays. (English) Zbl 1449.34241

Summary: In this paper, Clifford-valued inertial neutral neural networks with time-varying delays and infinite distributed delay are investigated. With the help of the pseudo almost periodic function theory, Banach’s fixed point theorem, and the differential inequality theory, a set of sufficient conditions that guarantee the existence and the global exponential stability of unique pseudo-almost periodic solutions of Clifford-valued inertial neutral neural networks with mixed delays are established. Our results are new and complement some previously known ones. Moreover, numerical simulations are carried out to illustrate our theoretical results.

MSC:

34K14 Almost and pseudo-almost periodic solutions to functional-differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
34K40 Neutral functional-differential equations
34K20 Stability theory of functional-differential equations
43A60 Almost periodic functions on groups and semigroups and their generalizations (recurrent functions, distal functions, etc.); almost automorphic functions
Full Text: DOI

References:

[1] Aouiti, C., Neutral impulsive shunting inhibitory cellular neural networks with time-varying coefficients and leakage delays, Cogn Neurodyn, 10, 6, 573-591 (2016) · doi:10.1007/s11571-016-9405-1
[2] Aouiti, C., Oscillation of impulsive neutral delay generalized high-order Hopfield neural networks, Neural Comput Appl, 29, 9, 477-495 (2018) · doi:10.1007/s00521-016-2558-3
[3] Aouiti, C.; Dridi, F., New results on impulsive Cohen-Grossberg neural networks, Neural Process Lett, 49, 3, 1459-1483 (2019) · doi:10.1007/s11063-018-9880-y
[4] Aouiti, C.; Dridi, F., Piecewise asymptotically almost automorphic solutions for impulsive non-autonomous high-order Hopfield neural networks with mixed delays, Neural Comput Appl, 31, 9, 5527-5545 (2019) · doi:10.1007/s00521-018-3378-4
[5] Aouiti, C.; Ben Gharbia, I.; Cao, J.; M’hamdi, MS; Alsaedi, A., Existence and global exponential stability of pseudo almost periodic solution for neutral delay BAM neural networks with time-varying delay in leakage terms, Chaos Solitons Fractals, 107, 111-127 (2018) · Zbl 1380.92006 · doi:10.1016/j.chaos.2017.12.022
[6] Aouiti, C.; Assali, EA; Gharbia, IB, Pseudo almost periodic solution of recurrent neural networks with D operator on time scales, Neural Process Lett, 50, 1, 297-320 (2019) · doi:10.1007/s11063-019-10048-2
[7] Aouiti, C.; Assali, EA; Gharbia, IB; El Foutayeni, Y., Existence and exponential stability of piecewise pseudo almost periodic solution of neutral-type inertial neural networks with mixed delay and impulsive perturbations, Neurocomputing, 357, 292-309 (2019) · doi:10.1016/j.neucom.2019.04.077
[8] Aouiti C, Abed Assali E (2019) Effect of fuzziness on the stability of inertial neural networks with mixed delay via non-reduced-order method. Int J Comput Math Comput Syst Theory 1-20 · Zbl 1429.93172
[9] Aouiti C, Assali EA, Chérif F, Zeglaoui A (2019) Fixed-time synchronization of competitive neural networks with proportional delays and impulsive effect. Neural Comput Appl 1-10
[10] Aouiti C, Sakthivel R, Touati F (2019) Global dissipativity of high-order Hopfield bidirectional associative memory neural networks with mixed delays. Neural Comput Appl 1-15
[11] Bohr, H., Zur Theorie der fastperiodischen Funktionen. II, Acta Math, 46, 101-214 (1925) · JFM 51.0212.02 · doi:10.1007/BF02543859
[12] Bohr H, Zur Theorie der Fastperiodischen Funktionen I (1925) III. Acta Math 45:29-127 · JFM 50.0196.01
[13] Buchholz S (2005) A theory of neural computation with Clifford algebras (Doctoral dissertation, Christian-Albrechts Universität Kiel)
[14] Cao, Y.; Samidurai, R.; Sriraman, R., Stability and dissipativity analysis for neutral type stochastic Markovian jump static neural networks with time delays, J Artif Intell Soft Comput Res, 9, 3, 189-204 (2019) · doi:10.2478/jaiscr-2019-0003
[15] Cao, Y.; Sriraman, R.; Shyamsundarraj, N.; Samidurai, R., Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays, Math Comput Simul, 171, 207-220 (2020) · Zbl 1510.93236 · doi:10.1016/j.matcom.2019.05.011
[16] Cao, Y.; Sriraman, R.; Samidurai, R., Stability and stabilization analysis of nonlinear time-delay systems with randomly occurring controller gain fluctuation, Math Comput Simul, 171, 36-51 (2020) · Zbl 1510.93340 · doi:10.1016/j.matcom.2019.03.002
[17] Chevalley CCAO (1954) The algebraic theory of spinors. New York, pp 65-192 · Zbl 0057.25901
[18] Chuanyi, Z., Almost periodic type functions and ergodicity (2003), Berlin: Springer, Berlin · Zbl 1068.34001
[19] Clifford, WK, Applications of Grassmann’s extensive algebra, Am J Math, 1, 350-358 (1878) · JFM 10.0297.02 · doi:10.2307/2369379
[20] Hestenes, D.; Sobczyk, G., Clifford algebra to geometric calculus: a unified language for mathematics and physics (2012), Berlin: Springer, Berlin
[21] Hitzer, E.; Nitta, T.; Kuroe, Y., Applications of Clifford’s geometric algebra, Adv Appl Clifford Algebras, 23, 2, 377-404 (2013) · Zbl 1269.15022 · doi:10.1007/s00006-013-0378-4
[22] Karthick SA, Sakthivel R, Aouiti C, Leelamani A (2019) Memory feedback finite-time control for memristive neutral-type neural networks with quantization. Chin J Phys. 10.1016/j.cjph.2019.09.016 · Zbl 07834912
[23] Ke, Y.; Miao, C., Anti-periodic solutions of inertial neural networks with time delays, Neural Process Lett, 45, 2, 523-538 (2017) · doi:10.1007/s11063-016-9540-z
[24] Kumar, R.; Das, S.; Cao, Y., Effects of infinite occurrence of hybrid impulses with quasi-synchronization of parameter mismatched neural networks, Neural Netw, 122, 106-116 (2020) · doi:10.1016/j.neunet.2019.10.007
[25] Li, X., Global robust stability for stochastic interval neural networks with continuously distributed delays of neutral type, Appl Math Comput, 215, 12, 4370-4384 (2010) · Zbl 1196.34107
[26] Li, X.; Bohner, M., Exponential synchronization of chaotic neural networks with mixed delays and impulsive effects via output coupling with delay feedback, Math Comput Modell, 52, 5-6, 643-653 (2010) · Zbl 1202.34128 · doi:10.1016/j.mcm.2010.04.011
[27] Li, X.; Cao, J., Delay-dependent stability of neural networks of neutral type with time delay in the leakage term, Nonlinearity, 23, 7, 1709 (2010) · Zbl 1196.82102 · doi:10.1088/0951-7715/23/7/010
[28] Li, B.; Li, Y., Existence and global exponential stability of pseudo almost periodic solution for Clifford-valued neutral high-order hopfield neural networks with leakage delays, IEEE Access, 7, 150213-150225 (2019) · doi:10.1109/ACCESS.2019.2947647
[29] Li, C.; Chen, G.; Liao, X.; Yu, J., Hopf bifurcation and chaos in a single inertial neuron model with time delay, Eur Phys J B Condens Matter Complex Syst, 41, 3, 337-343 (2004) · doi:10.1140/epjb/e2004-00327-2
[30] Liu, Y.; Xu, P.; Lu, J.; Liang, J., Global stability of Clifford-valued recurrent neural networks with time delays, Nonlinear Dyn, 84, 2, 767-777 (2016) · Zbl 1354.93132 · doi:10.1007/s11071-015-2526-y
[31] Li Y, Xiang J (2019) Global asymptotic almost periodic synchronization of Clifford-valued CNNs with discrete delays. Complexity · Zbl 1417.34143
[32] Manivannan, R.; Cao, Y., Design of generalized dissipativity state estimator for static neural networks including state time delays and leakage delays, J Franklin Inst, 355, 9, 3990-4014 (2018) · Zbl 1390.93607 · doi:10.1016/j.jfranklin.2018.01.051
[33] Meinrenken, E., Clifford algebras and Lie theory (2013), Berlin/Heidelberg: Springer, Berlin/Heidelberg · Zbl 1267.15021
[34] Park, JH; Kwon, OM, A novel criterion for delayed feedback control of time-delay chaotic systems, Chaos Solitons Fractals, 23, 2, 495-501 (2005) · Zbl 1061.93507 · doi:10.1016/j.chaos.2004.05.023
[35] Park, JH; Kwon, OM, Global stability for neural networks of neutral-type with interval time-varying delays, Chaos Solitons Fractals, 41, 3, 1174-1181 (2009) · Zbl 1198.34158 · doi:10.1016/j.chaos.2008.04.049
[36] Park, JH; Kwon, OM; Lee, SM, LMI optimization approach on stability for delayed neural networks of neutral-type, Appl Math Comput, 196, 1, 236-244 (2008) · Zbl 1157.34056
[37] Pearson JK, Bisset DL (1992) Back propagation in a Clifford algebra. Artif Neural Netw 2
[38] Porteous, IR, Clifford algebras and the classical groups (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0855.15019
[39] Riesz M (1958) Clifford numbers and spinors. Lecture Series No. 38. The Institute for Fluid Dynamics and Applied Mathematics, University of Maryland · Zbl 0103.38403
[40] Ruiz-Herrera, A., Chaos in delay differential equations with applications in population dynamics, Discrete. Cont. Dyn. Syst, 33, 4, 1633-1644 (2013) · Zbl 1318.92042 · doi:10.3934/dcds.2013.33.1633
[41] Stépán G (1999) Delay, nonlinear oscillations and shimmying wheels. In: IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics. Springer, Dordrecht, pp 373-386 · Zbl 0947.70528
[42] Sun, J., Delay-dependent stability criteria for time-delay chaotic systems via time-delay feedback control, Chaos Solitons Fractals, 21, 1, 143-150 (2004) · Zbl 1048.37509 · doi:10.1016/j.chaos.2003.10.018
[43] Yan, J.; Zhao, A.; Peng, L., Oscillation of impulsive delay differential equations and applications to population dynamics, ANZIAM J, 46, 4, 545-554 (2005) · Zbl 1078.34529 · doi:10.1017/S1446181100009664
[44] Yankson, E., Positive periodic solutions for second-order neutral differential equations with functional delay, Electron J Differ Equ, 2012, 14, 1-6 (2012) · Zbl 1243.34114
[45] Zhang, CY, Pseudo almost periodic solutions of some differential equations, J Math Anal Appl, 181, 1, 62-76 (1994) · Zbl 0796.34029 · doi:10.1006/jmaa.1994.1005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.