×

Mean field linear-quadratic control: uniform stabilization and social optimality. (English) Zbl 1448.91028

Summary: This paper is concerned with uniform stabilization and social optimality for general mean field linear-quadratic control systems, where subsystems are coupled via individual dynamics and costs, and the state weight is not assumed with the definiteness condition. For the finite-horizon problem, we first obtain a set of forward-backward stochastic differential equations (FBSDEs) from variational analysis, and construct a feedback-type control by decoupling the FBSDEs. For the infinite-horizon problem, by using solutions to two Riccati equations, we design a set of decentralized control laws, which is further proved to be asymptotically social optimal. Some equivalent conditions are given for uniform stabilization of the systems in different cases, respectively. Finally, the proposed decentralized controls are compared to the asymptotic optimal strategies in previous works.

MSC:

91A16 Mean field games (aspects of game theory)
49N10 Linear-quadratic optimal control problems
49N80 Mean field games and control
93A16 Multi-agent systems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] Abou-Kandil, H.; Freiling, G.; Ionescu, V.; Jank, G., Matrix Riccati equations in control and systems theory (2003), Birkhiiuser Verlag · Zbl 1027.93001
[2] Anderson, B. D.O.; Moore, J. B., Optimal control: linear quadratic methods (1990), Prentice Hall: Prentice Hall Englewood Cliffs. NJ · Zbl 0751.49013
[3] Arabneydi, J., & Mahajan, A. (2015). Team-optimal solution of finite number of mean-field coupled LQG subsystems. In Proc. 54th IEEE CDC, Osaka, Japan (pp. 5308-5313).
[4] Basar, T.; Olsder, G. J., Dynamic noncooperative game theory (1982), Academic Press · Zbl 0479.90085
[5] Bauso, D.; Tembine, H.; Basar, T., Opinion dynamics in social networks through mean-field games, SIAM Journal on Control and Optimization, 54, 6, 3225-3257 (2016) · Zbl 1351.93004
[6] Bensoussan, A.; Frehse, J.; Yam, P., Mean field games and mean field type control theory (2013), Springer: Springer New York · Zbl 1287.93002
[7] Bensoussan, A.; Sung, K. C.; Yam, S. C.; Yung, S. P., Linear-quadratic mean field games, Journal of Optimization Theory & Applications, 169, 2, 496-529 (2016) · Zbl 1343.91010
[8] Caines, P. E.; Huang, M.; Malhamé, R. P., Mean field games, (Basar, T.; Zaccour, G., Handbook of dynamic game theory (2017), Springer: Springer Berlin)
[9] Cardaliaguet, P., Notes on mean field games (2012), University of Paris: University of Paris Dauphine
[10] Carmona, R.; Delarue, F., Probabilistic analysis of mean-field games, SIAM Journal on Control and Optimization, 51, 4, 2705-2734 (2013) · Zbl 1275.93065
[11] Chan, P.; Sircar, R., Bertrand and cournot mean field games, Applied Mathematics and Optimization, 71, 3, 533-569 (2015) · Zbl 1318.49072
[12] Chen, Y.; Busic, A.; Busic, R. P.; Meyn, S., State estimation for the individual and the population in mean field control with application to demand dispatch, IEEE Transactions on Automatic Control, 62, 3, 1138-1149 (2017) · Zbl 1366.93629
[13] Elliott, R.; Li, X.; Ni, Y.-H., Discrete time mean-field stochastic linear-quadratic optimal control problems, Automatica, 49, 11, 3222-3233 (2013) · Zbl 1358.93189
[14] Gomes, D. A.; Saude, J., Mean field games models-a brief survey, Dynamic Games and Applications, 4, 2, 110-154 (2014) · Zbl 1314.91048
[15] Guéant, O.; Lasry, J. M.; Lions, P. L., (Mean field games and applications. Mean field games and applications, Paris-Princeton lectures on mathematical finance (2011), Springer-Verlag: Springer-Verlag Heidelberg, Germany), 205-266 · Zbl 1205.91027
[16] He, W.; Qian, F.; Lam, J.; Chen, G.; Han, Q.-L.; Kurths, J., Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design, Automatica, 62, 249-262 (2015) · Zbl 1330.93011
[17] Ho, Y.-C., Team decision theory and information structures, Proceedings of the IEEE, 68, 6, 644-654 (1980)
[18] Huang, J.; Huang, M., Robust mean field linear-quadratic-Gaussian games with model uncertainty, SIAM Journal on Control and Optimization, 55, 5, 2811-2840 (2017) · Zbl 1414.91057
[19] Huang, M., Large-population LQG games involving a major player: the Nash certainty equivalence principle, SIAM Journal on Control and Optimization, 48, 5, 3318-3353 (2010) · Zbl 1200.91020
[20] Huang, M.; Caines, P. E.; Malhamé, R. P., Large-population cost-coupled LQG problems with non-uniform agents: Individual-mass behavior and decentralized \(\varepsilon \)-Nash equilibria, IEEE Transactions on Automatic Control, 52, 9, 1560-1571 (2007) · Zbl 1366.91016
[21] Huang, M.; Caines, P.; Malhamé, R., Social optima in mean field LQG control: Centralized and decentralized strategies, IEEE Transactions on Automatic Control, 57, 7, 1736-1751 (2012) · Zbl 1369.49052
[22] Huang, M.; Malhamé, R. P.; Caines, P. E., Large population stochastic dynamic games: Closed-loop mckean-vlasov systems and the Nash certainty equivalence principle, Communication in Information and Systems, 6, 221-251 (2006) · Zbl 1136.91349
[23] Huang, M., & Nguyen, L. (2016). Linear-quadratic mean field teams with a major agent. In Proc. 55th IEEE CDC, Las Vegas, NV (pp. 6958-6963).
[24] Huang, M.; Zhou, M., Linear quadratic mean field games: Asymptotic solvability and relation to the fixed point approach, IEEE Transactions on Automatic Control, 65, 4, 1397-1412 (2020) · Zbl 1533.91045
[25] Lasry, J. M.; Lions, P. L., Mean field games, Japanese Journal of Mathematics, 2, 1, 229-260 (2007) · Zbl 1156.91321
[26] Li, J.; Ma, G.; Li, T.; Chen, W.; Gu, Y., A stackelberg game approach for demand response management of multi-microgrids with overlapping sales areas, Science China. Information Sciences, 62, 11, Article 212203 pp. (2019)
[27] Li, T.; Zhang, J.-F., Decentralized tracking-type games for multi-agent systems with coupled ARX models: asymptotic Nash equilibria, Automatica, 44, 3, 713-725 (2008) · Zbl 1283.93022
[28] Ma, Z.; Callaway, D.; Hiskens, I., Decentralized charging control for large populations of plug-in electric vehicles, IEEE Transactions on Control Systems Technology, 21, 1, 67-78 (2013)
[29] Ma, J.; Yong, J., Forward-backward stochastic differential equations and their applications (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0927.60004
[30] Molinari, B. P., The time-invariant linear-quadratic optimal control problem, Automatica, 13, 4, 347-357 (1977) · Zbl 0359.49001
[31] Moon, J.; Basar, T., Linear quadratic risk-sensitive and robust mean field games, IEEE Transactions on Automatic Control, 62, 3, 1062-1077 (2017) · Zbl 1366.91018
[32] Sun, J.; Li, X.; Yong, J., Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems, SIAM Journal on Control and Optimization, 54, 5, 2274-2308 (2016) · Zbl 1347.49033
[33] Wang, B.-C., & Huang, J. (2017). Social optima in robust mean field LQG control. In Proc. the 11th Asian control conference Gold Coast, Austrilia (pp. 2089-2094).
[34] Wang, B.-C.; Huang, M., Mean field production output control with sticky prices: Nash and social solutions, Automatica, 100, 90-98 (2019) · Zbl 1411.91064
[35] Wang, B.-C.; Zhang, J.-F., Distributed control of multi-agent systems with random parameters and a major agent, Automatica, 48, 9, 2093-2106 (2012) · Zbl 1257.93008
[36] Wang, B.-C.; Zhang, J.-F., Mean field games for large-population multiagent systems with Markov jump parameters, SIAM Journal on Control and Optimization, 50, 4, 2308-2334 (2012) · Zbl 1263.91007
[37] Wang, B.-C.; Zhang, J.-F., Social optima in mean field linear-quadratic-Gaussian models with Markov jump parameters, SIAM Journal on Control and Optimization, 55, 1, 429-456 (2017)
[38] Weintraub, G.; Benkard, C.; Van Roy, B., Markov perfect industry dynamics with many firms, Econometrica, 76, 6, 1375-1411 (2008) · Zbl 1154.91346
[39] Willems, J. C., Least squares stationary optimal control and the algebraic Riccati equation, IEEE Transactions on Automatic Control, 16, 6, 621-634 (1971)
[40] Wonham, W., On a matrix Riccati equation of stochastic control, SIAM Journal on Control and Optimization, 6, 4, 681-697 (1968) · Zbl 0182.20803
[41] Yin, H.; Mehta, P. G.; Meyn, S. P.; Shanbhag, U. V., Synchronization of coupled oscillators is a game, IEEE Transactions on Automatic Control, 57, 4, 920-935 (2012) · Zbl 1369.34056
[42] Yong, J., Linear-quadratic optimal control problems for mean-field stochastic differential equations, SIAM Journal on Control and Optimization, 51, 4, 2809-2838 (2013) · Zbl 1275.49060
[43] Zhang, H.; Qi, Q.; Fu, M., Optimal stabilization control for discrete-time mean-field stochastic systems, IEEE Transactions on Automatic Control, 64, 3, 1125-1136 (2019) · Zbl 1482.93691
[44] Zhang, H.; Xu, J., Control for Itô stochastic systems with input delay, IEEE Transactions on Automatic Control, 62, 1, 350-365 (2017) · Zbl 1359.93543
[45] Zhang, W.; Zhang, H.; Chen, B. S., Generalized Lyapunov equation approach to state-dependent stochastic stabilization/detectability criterion, IEEE Transactions on Automatic Control, 53, 7, 1630-1642 (2008) · Zbl 1367.93549
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.