×

Linear-quadratic mean field games. (English) Zbl 1343.91010

Summary: We provide a comprehensive study of a general class of linear-quadratic mean field games. We adopt the adjoint equation approach to investigate the unique existence of their equilibrium strategies. Due to the linearity of the adjoint equations, the optimal mean field term satisfies a forward-backward ordinary differential equation. For the one-dimensional case, we establish the unique existence of the equilibrium strategy. For a dimension greater than one, by applying the Banach fixed point theorem under a suitable norm, a sufficient condition for the unique existence of the equilibrium strategy is provided, which is independent of the coefficients of controls in the underlying dynamics and is always satisfied whenever the coefficients of the mean field term are vanished, and hence, our theories include the classical linear-quadratic stochastic control problems as special cases. As a by-product, we also establish a neat and instructive sufficient condition, which is apparently absent in the literature and only depends on coefficients, for the unique existence of the solution for a class of nonsymmetric Riccati equations. Numerical examples of nonexistence of the equilibrium strategy will also be illustrated. Finally, a similar approach has been adopted to study the linear-quadratic mean field type stochastic control problems and their comparisons with mean field games.

MSC:

91A16 Mean field games (aspects of game theory)
91A23 Differential games (aspects of game theory)
91A07 Games with infinitely many players
91A15 Stochastic games, stochastic differential games
49N10 Linear-quadratic optimal control problems
49N80 Mean field games and control
93E20 Optimal stochastic control

References:

[1] Kirman, A.: Ants, rationality, and recruitment. Q. J. Econ. 108(1), 137-156 (1993) · doi:10.2307/2118498
[2] Elliott, R.J., Kalton, N.J., Markus, L.: Saddle points for linear differential games. SIAM J. Control 11, 100-112 (1973) · Zbl 0255.90086 · doi:10.1137/0311008
[3] Fleming, W.H., Souganidis, P.E.: On the existence of value functions of two player, zero sum stochastic differential games. Indiana Univ. Math. J. 38, 293-314 (1989) · Zbl 0686.90049 · doi:10.1512/iumj.1989.38.38015
[4] Bensoussan, A., Frehse, J.: Stochastic games for N players. J. Optim. Theory Appl. 105(3), 543-565 (2000) · Zbl 0977.91006 · doi:10.1023/A:1004637022496
[5] Bensoussan, A., Frehse, J.: On diagonal elliptic and parabolic systems with super-quadratic Hamiltonians. Commun. Pure Appl. Anal. 8, 83-94 (2009) · Zbl 1152.35361
[6] Bensoussan, A., Frehse, J., Vogelgesang, J.: Systems of Bellman equations to stochastic differential games with non-compact coupling. Discret. Contin. Dyn. Syst. 27(4), 1375-1389 (2010) · Zbl 1191.35275 · doi:10.3934/dcds.2010.27.1375
[7] Huang, M., Caines, P.E., Malhamé, R.P.: Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, December 2003, pp. 98-103 (2003) · Zbl 1325.35232
[8] Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221-252 (2006) · Zbl 1136.91349
[9] Lasry, J.-M., Lions, P.-L.: Jeux á champ moyen I—Le cas stationnaire. C. R. Acad. Sci. Ser. I 343, 619-625 (2006a) · Zbl 1153.91009 · doi:10.1016/j.crma.2006.09.019
[10] Lasry, J.-M., Lions, P.-L.: Jeux á champ moyen II. Horizon fini et contrôle optimal. C. R. Acad. Sci. Ser. I 343, 679-684 (2006b) · Zbl 1153.91010 · doi:10.1016/j.crma.2006.09.018
[11] Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2(1), 229-260 (2007) · Zbl 1156.91321 · doi:10.1007/s11537-007-0657-8
[12] Bardi, M.: Explicit solutions of some linear-quadratic mean field games. Netw. Heterog. Media 7(2), 243-261 (2012) · Zbl 1268.91017 · doi:10.3934/nhm.2012.7.243
[13] Li, T., Zhang, J.-F.: Asymptotically optimal decentralized control for large population stochastic multiagent systems. IEEE Trans. Automat. Contr. 53(7), 1643-1660 (2008) · Zbl 1367.93249 · doi:10.1109/TAC.2008.929370
[14] Guéant, O.: A reference case for mean field games models. J. Math. Pures Appl. 92, 276-294 (2009) · Zbl 1173.91020 · doi:10.1016/j.matpur.2009.04.008
[15] Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized \[\epsilon\] ϵ-Nash equilibria. IEEE Trans. Automat. Contr. 52(9), 1560-1571 (2007b) · Zbl 1366.91016 · doi:10.1109/TAC.2007.904450
[16] Huang, M., Caines, P.E., Malhamé, R.P.: Social optima in mean field LQG control: centralized and decentralized strategies. IEEE Trans. Automat. Contr. 57(7), 1736-1752 (2012) · Zbl 1369.49052 · doi:10.1109/TAC.2012.2183439
[17] Huang, M., Caines, P.E., Malhamé, R.P.: Social certainty equivalence in mean field LQG control: social, Nash and centralized strategies. In: Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest, Hungary, July 2010, pp. 1525-1532 (2010) · Zbl 1286.91022
[18] Nourian, M., Caines, P.E., Malhamé, R.P.: Mean field analysis of controlled Cucker-Smale type flocking: linear analysis and perturbation equations. In: Proceedings of the 18th IFAC World Congress, Milan, August 2011, pp. 4471-4476 (2011) · Zbl 1192.91028
[19] Yin, H., Mehta, P.G., Meyn, S.P., Shanbhag, U.V.: Synchronization of coupled oscillators is a game. IEEE Trans. Automat. Contr. 54(7), 920-935 (2010) · Zbl 1369.34056
[20] Guéant, O.: Mean field games equation with quadratic hamiltonian: a specific approach. Math. Models Methods Appl. Sci. 22(9), 1250022 (2012) · Zbl 1252.91013
[21] Lachapelle, A.: Human crowds and groups interactions: a mean field games approach. Technical report, CEREMADE, Université Paris-Dauphine (2010) · Zbl 1286.91022
[22] Lachapelle, A., Wolfram, M.-T.: On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp. Res. B 45(10), 1572-1589 (2011) · doi:10.1016/j.trb.2011.07.011
[23] Lachapelle, A., Salomon, J., Turinici, G.: Computation of mean field equilibria in economics. Math. Models Methods Appl. Sci. 20(4), 567-588 (2010) · Zbl 1193.91018 · doi:10.1142/S0218202510004349
[24] Tembine, H., Zhu, Q., Başar, T.: Risk-sensitive mean-field stochastic differential games. In: Proceedings of the 18th IFAC World Congress, Milan, August 2011, pp. 3222-3227 (2011)
[25] Yang, T., Metha, P.G., Meyn, S.P.: A mean-field control-oriented approach to particle filtering. In: Proceedings of the American Control Conference (ACC), June 2011, pp. 2037-2043 (2011) · Zbl 1367.93249
[26] Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50(1), 77-109 (2012) · Zbl 1242.91014 · doi:10.1137/100790069
[27] Achdou, Y., Camilli, F., Capuzzo-Dolcetta, I.: Mean field games: convergence of a finite difference method. SIAM J. Numer. Anal. 51(5), 2582-2612 (2013) · Zbl 1286.91022 · doi:10.1137/120882421
[28] Achdou, Y., Capuzzo-Dolcetta, I.: Mean field games: numerical methods. SIAM J. Numer. Anal. 48(3), 1136-1162 (2010) · Zbl 1217.91019 · doi:10.1137/090758477
[29] Gomes, D.A., Mohr, J., Souza, R.R.: Discrete time, infinite state space mean field games. J. Math. Pures Appl. 93, 308-328 (2010) · Zbl 1192.91028 · doi:10.1016/j.matpur.2009.10.010
[30] Camilli, F., Marchi, C.: Stationary mean field games systems defined on networks. Preprint, arXiv:1505.04953 (2015) · Zbl 1382.91015
[31] Bardi, M., Priuli, F.S.: Linear-quadratic N-person and mean-field games with ergodic cost. SIAM J. Control Optim. 52(5), 3022-3052 (2014) · Zbl 1308.91008 · doi:10.1137/140951795
[32] Bensoussan, A., Sung, K.C.J., Yam, S.C.P.: Linear-quadratic time-inconsistent mean field games. Dyn. Games Appl. 3(4), 537-552 (2013) · Zbl 1314.91040 · doi:10.1007/s13235-013-0090-y
[33] Priuli, F.S.: Linear-quadratic N-person and mean-field games: infinite horizon games with discounted cost and singular limits. Dyn. Games Appl. 5(3), 397-419 (2014) · Zbl 1348.91024
[34] Huang, M.: Large-population LQG games involving a major player: the Nash certainty equivalence principle. SIAM J. Control Optim. 48(5), 3318-3353 (2010) · Zbl 1200.91020 · doi:10.1137/080735370
[35] Nourian, M., Caines, P.E.: \[ \epsilon\] ϵ-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J. Control Optim. 51(4), 3302-3331 (2013) · Zbl 1275.93067 · doi:10.1137/120889496
[36] Nourian, M., Caines, P.E., Malhamé, R.P., Huang, M.: Nash, social and centralized solutions to consensus problems via mean field control theory. IEEE Trans. Automat. Control 58(3), 639-653 (2013) · Zbl 1369.93041 · doi:10.1109/TAC.2012.2215399
[37] Bensoussan, A., Chau, M.H.M., Yam, S.C.P.: Mean-field Stackelberg games: aggregation of delayed instructions. SIAM J. Control Optim. 53(4), 2237-2266 (2015) · Zbl 1320.91028 · doi:10.1137/140993399
[38] Bensoussan, A., Frehse, J., Yam, S.C.P.: The master equation in mean field theory. J. Math. Pures Appl. 103(6), 1441-1474 (2015) · Zbl 1325.35232 · doi:10.1016/j.matpur.2014.11.005
[39] Bensoussan, A., Yam, S.C.P., Zhang, Z.: Well-posedness of mean-field type forward-backward stochastic differential equations. Stoch. Process. Their Appl. 125(9), 3327-3354 (2015) · Zbl 1327.60114 · doi:10.1016/j.spa.2015.04.006
[40] Cardaliaguet, P.: Notes on mean field games (2013) · Zbl 1314.91043
[41] Guéant, O.: Mean field games and applications to economics. Ph.D. Thesis, Université Paris-Dauphine (2009) · Zbl 1173.91020
[42] Guéant, O., Lasry, J.M., Lions, P.L.: Mean field games and applications. Paris-Princeton Lectures on Mathematical Finance, Springer, Berlin Heidelberg, pp. 205-266 (2011) · Zbl 1205.91027
[43] Bensoussan, A., Frehse, J., Yam, S.C.P.: Mean field games and mean field type control theory. Springer, Berlin (2013) · Zbl 1287.93002 · doi:10.1007/978-1-4614-8508-7
[44] Huang, M., Caines, P.E., Malhamé, R.P.: An invariance principle in large population stochastic dynamic games. J. Syst. Sci. Complex. 20(2), 162-172 (2007a) · Zbl 1280.91020 · doi:10.1007/s11424-007-9015-4
[45] Freiling, G.: A survey of nonsymmetric Riccati equations. Linear Algebra Appl. 351, 243-270 (2002) · Zbl 1008.34004 · doi:10.1016/S0024-3795(01)00534-1
[46] Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems: generalizations to non-uniform individuals. In: Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, December 2004, pp. 3453-3458 (2004)
[47] Andersson, D., Djehiche, B.: A maximum principle for SDEs of mean-field type. Appl. Math. Optim. 63(3), 341-356 (2010) · Zbl 1215.49034 · doi:10.1007/s00245-010-9123-8
[48] Buckdahn, R., Djehiche, B., Li, J., Peng, S.: Mean-field backward stochastic differential equations: a limit approach. Ann. Probab. 37(4), 1524-1565 (2009) · Zbl 1176.60042 · doi:10.1214/08-AOP442
[49] Buckdahn, R., Li, J., Peng, S.: Mean-field backward stochastic differential equations and related partial differential equations. Stoch. Process. Appl. 119(10), 3133-3154 (2007) · Zbl 1183.60022 · doi:10.1016/j.spa.2009.05.002
[50] Bensoussan, A.: Stochastic control of partially observable systems. Cambridge University Press, Cambridge (1992) · Zbl 0776.93094 · doi:10.1017/CBO9780511526503
[51] Ma, J., Yong, J.: Forward-backward stochastic differential equations and their applications. Lecture Notes in Mathematics, vol. 1702, Springer, Berlin (1999) · Zbl 0927.60004
[52] Sznitman, A.S.: Topics in Propagation of Chaos. In: Ecôle de Probabilites de Saint Flour, XIX-1989, Lecture Notes in Mathematics, vol. 1464, pp. 165-251 (1989) · Zbl 0977.91006
[53] Bensoussan, A., Chau, M.H.M., Yam, S.C.P.: Mean field games with a dominating player. Appl. Math. Optim. (2015, forthcoming) · Zbl 1348.49031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.