×

Optical dromions and domain walls with the Kundu-Mukherjee-Naskar equation by the Laplace-Adomian decomposition scheme. (English) Zbl 1448.65291

Summary: This paper numerically addresses optical dromions and domain walls that are monitored by Kundu-Mukherjee-Naskar equation. The Kundu-Mukherjee-Naskar equation is considered because this model describes the propagation of soliton dynamics in optical fiber communication system. The scheme employed in this work is Laplace-Adomian decomposition type. The accuracy of the scheme is \(O(10^{-8})\) and the physical structure of the obtained solutions are shown by graphic illustration in order to give a better understanding on the dynamics of both optical dromions and domain walls.

MSC:

65Z05 Applications to the sciences
78A60 Lasers, masers, optical bistability, nonlinear optics
Full Text: DOI

References:

[1] Kudryashov, N. A.; Safonova, D. V.; Biswas, A., Painlevé Analysis and a Solution to the Traveling Wave Reduction of the Radhakrishnan - Kundu - Lakshmanan Equation, Regul. Chaotic Dyn., 24, 6, 607-614 (2019) · Zbl 1434.78022 · doi:10.1134/S1560354719060029
[2] Biswas, A.; Kara, A. H.; Zhou, Q.; Alzahrani, A. K.; Belic, M. R., Conservation Laws for Highly Dispersive Optical Solitons in Birefringent Fibers, Regul. Chaotic Dyn., 25, 2, 166-177 (2020) · Zbl 1433.78019 · doi:10.1134/S1560354720020033
[3] Kudryashov, N. A., Rational and Special Solutions for Some Painlevé Hierarchies, Regul. Chaotic Dyn., 24, 1, 90-100 (2019) · Zbl 1415.34132 · doi:10.1134/S1560354719010052
[4] Kudryashov, N. A., Lax Pairs and Special Polynomials Associated with Self-Similar Reductions of Sawada - Kotera and Kupershmidt Equations, Regul. Chaotic Dyn., 25, 1, 59-77 (2020) · Zbl 1441.34096 · doi:10.1134/S1560354720010074
[5] Kudryashov, N. A., Exact Solutions and Integrability of the Duffing – van der Pol Equation, Regul. Chaotic Dyn., 23, 4, 471-479 (2018) · Zbl 1425.34105 · doi:10.1134/S156035471804007X
[6] Kudryashov, N. A.; Sinelshchikov, D. I., On the Integrability Conditions for a Family of Liénard-Type Equations, Regul. Chaotic Dyn., 21, 5, 548-555 (2016) · Zbl 1355.34006 · doi:10.1134/S1560354716050063
[7] Kudryashov, N. A., Higher Painlevé Transcendents As Special Solutions of Some Nonlinear Integrable Hierarchies, Regul. Chaotic Dyn., 19, 1, 48-63 (2014) · Zbl 1328.35193 · doi:10.1134/S1560354714010043
[8] Kudryashov, N. A., Solitary and Periodic Solutions of the Generalized Kuramoto - Sivashinsky Equation, Regul. Chaotic Dyn., 13, 3, 234-238 (2008) · Zbl 1229.35229 · doi:10.1134/S1560354708030088
[9] Kundu, A.; Mukherjee, A.; Naskar, T., Modelling Rogue Waves through Exact Dynamical Lump Soliton Controlled by Ocean Currents, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470, 2164 (2014) · Zbl 1371.86010
[10] He, J.-H., Variational Principle and Periodic Solution of the Kundu - Mukherjee - Naskar Equation, Results Phys., 17 (2020) · doi:10.1016/j.rinp.2020.103031
[11] Wen, X., Higher-Order Rational Solutions for the \((2+1)\)-Dimensional KMN Equation, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 18, 3, 191-198 (2017) · Zbl 1413.35410
[12] Yildirim, Y.; Mirzazadeh, M., Optical Pulses with Kundu - Mukherjee - Naskar Model in Fiber Communication Systems, Chinese J. Phys., 64, 183-193 (2020) · Zbl 07830261 · doi:10.1016/j.cjph.2019.10.025
[13] Biswas, A.; Vega-Guzman, J.; Bansal, A.; Kara, A. H.; Alzahrani, A. K.; Zhou, Q.; Belic, M. R., Optical Dromions, Domain Walls and Conservation Laws with Kundu - Mukherjee - Naskar Equation via Traveling Waves and Lie Symmetry, Results Phys., 16 (2020) · doi:10.1016/j.rinp.2019.102850
[14] Yildirim, Y., Optical Solitons to Kundu - Mukherjee - Naskar Model with Trial Equation Approach, Optik, 183, 1061-1065 (2019) · doi:10.1016/j.ijleo.2019.02.117
[15] Ekici, M.; Sonmezoglu, A.; Biswas, A.; Belic, M. R., Optical Solitons in \((2+1)\)-Dimensions with Kundu - Mukherjee - Naskar Equation by Extended Trial Function Scheme, Chinese J. Phys., 57, 72-77 (2019) · Zbl 1539.35253 · doi:10.1016/j.cjph.2018.12.011
[16] Khuri, S. A., A Laplace Decomposition Algorithm Applied to a Class of Nonlinear Differential Equations, J. Appl. Math., 1, 4, 141-155 (2001) · Zbl 0996.65068 · doi:10.1155/S1110757X01000183
[17] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Dordrecht: Kluwer, Dordrecht · Zbl 0802.65122 · doi:10.1007/978-94-015-8289-6
[18] Wazwaz, A.-M., A New Algorithm for Calculating Adomian Polynomials for Nonlinear Operators, Appl. Math. Comput., 111, 1, 53-69 (2000) · Zbl 1023.65108
[19] Duan, J.-Sh., Convenient Analytic Recurrence Algorithms for the Adomian Polynomials, Appl. Math. Comput., 217, 13, 6337-6348 (2011) · Zbl 1214.65064
[20] Abbaoui, K.; Cherruault, Y., Convergence of Adomian’s Method Applied to Differential Equations, Comput. Math. Appl., 28, 5, 103-109 (1994) · Zbl 0809.65073 · doi:10.1016/0898-1221(94)00144-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.