×

Lax pairs and special polynomials associated with self-similar reductions of Sawada – Kotera and Kupershmidt equations. (English) Zbl 1441.34096

Self-similar reductions of the Sawada-Kotera (1) and Kupershmidt (2) equations are studied in the paper \[y_{zzzzz}+\frac{5}{2}nyy_{xxx}+\frac{5}{2}ny_{x}y_{xx}+\frac{5}{4}n^{2}y^{2}y_{x}-2y-zy_{z}=0\tag{1}\] \[w_{zzzzz}+10nww_{xxx}+25nw_{xx}+20n^{2}w^{2}w_{x}-2w-zw_{z}=0\tag{2}\] \[y=y(z),w=w(z),z=x(5t)^{-\frac{1}{5}}.\] The author shows that these equations pass the Painlevé test and he finds the Lax pair for them. To find exact solutions to the above equations, the author proceeds as follows. The differential polynomial \(P\) on the left hand side of the equation is represented as a superposition (product) \(P=L\circ Q\) of the linear polynomial \(L\) and the non-linear polynomial \(Q\), the zeros of which have already been studied. For example, for the first equation, this representation looks like this \((n=1)\) \[y_{zzzzz}+\frac{5}{2}yy_{xxx}+\frac{5}{2}yy_{xx}+\frac{5}{4}yy_{x}-2y-zy_{z}=(\frac{d^{^{3}}}{dz^{3}}+2y\frac{d}{dz}+y_{z})(y_{zz}+\frac{1}{4}y^{2}-z).\] Since the zeros of the polynomial \(Q\equiv y_{zz}+\frac{1}{4}y^{2}-z\) are expressed in terms of the solutions of the first Pelevé equation, then the latters represent solutions of equation (1) too. In a similar way, the author proves that equations (1) and (2) have solutions representable by means of general solution for the first member of \(K_{2}\) hierarchy. Rational solutions of the equations (1) and (2) also are given in the paper. Special polynomials are introduced for their expression.

MSC:

34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies
Full Text: DOI

References:

[1] Sawada, K.; Kotera, T., A Method for Finding N-soliton Solutions of the KdV Equation and the KdV-Like Equation, Prog. Theor. Phys., 51, 5, 1355-1367 (1974) · Zbl 1125.35400 · doi:10.1143/PTP.51.1355
[2] Caudrey, P. J.; Dodd, R. K.; Gibbon, J. D., A New Hierarchy of Korteweg-de Vries Equations, Proc. Roy. Soc. London Ser. A, 351, 1666, 407-422 (1976) · Zbl 0346.35024 · doi:10.1098/rspa.1976.0149
[3] Kupershmidt, B. A.; Wilson, G., Modifying Lax Equations and the Second Hamiltonian Structure, Invent. Math., 62, 3, 403-436 (1981) · Zbl 0464.35024 · doi:10.1007/BF01394252
[4] Satsuma, J.; Kaup, D. J., A Bäcklund Transformations for a Higher Order Korteweg-de Vries Equation, J. Phys. Soc. Japan, 43, 2, 692-697 (1977) · Zbl 1334.81041 · doi:10.1143/JPSJ.43.692
[5] Kaup, D. J., On the Inverse Scattering Problem for Cubic Eigenvalue Problems of the Class ψ_xxx + 6Qψ_x + 6Rψ = λψ, Stud. Appl. Math., 62, 3, 189-216 (1980) · Zbl 0431.35073 · doi:10.1002/sapm1980623189
[6] Fordy, A. P.; Gibbons, J., Some Remarkable Nonlinear Transformations, Phys. Lett. A, 75, 1, 325 (1979)
[7] Fordy, A. P.; Gibbons, J., Factorization of Operators: 1. Miura Transformations, J. Math. Phys., 21, 10, 2508-2510 (1980) · Zbl 0456.35079 · doi:10.1063/1.524357
[8] Fordy, A. P.; Gibbons, J., Factorization of Operators: 2, J. Math. Phys., 22, 6, 1170-1175 (1981) · Zbl 0476.35068 · doi:10.1063/1.525041
[9] Umemura, H., Second Proof of the Irreducibility of the First Differential Equation by Painlevé, Nagoya Math. J., 117, 125-171 (1990) · Zbl 0688.34006 · doi:10.1017/S0027763000001835
[10] Kudryashov, N. A., The First and Second Painlevé Equations of Higher Order and Some Relations between Them, Phys. Lett. A, 224, 6, 353-360 (1997) · Zbl 0962.35504 · doi:10.1016/S0375-9601(96)00795-5
[11] Hone, A. N W., Non-Autonomous Hénon-Heiles Systems, Phys. D, 118, 1-2, 1-16 (1998) · Zbl 0937.37037 · doi:10.1016/S0167-2789(98)00010-4
[12] Kudryashov, N. A., Transcendents Defined by Nonlinear Fourth-Order Ordinary Differential Equations, J. Phys. A, 32, 6, 999-1013 (1999) · Zbl 0930.34004 · doi:10.1088/0305-4470/32/6/012
[13] Kudryashov, N. A., On New Transcendents Defined by Nonlinear Ordinary Differential Equations, J. Phys. A, 31, 6, L129-L137 (1998) · Zbl 0906.34005 · doi:10.1088/0305-4470/31/6/002
[14] Gordoa, P. R.; Pickering, A., Nonisospectral Scattering Problems: A Key to Integrable Hierarchies, J. Math. Phys., 40, 11, 5749-5786 (1999) · Zbl 1063.37544 · doi:10.1063/1.533055
[15] Muğan, U.; Jrad, F., Painlevé Test and the First Painlevé Hierarchy, J. Phys. A, 32, 45, 7933-7952 (1999) · Zbl 0943.34085 · doi:10.1088/0305-4470/32/45/309
[16] Pickering, A., Coalescence Limits for Higher Order Painlevé Equations, Phys. Lett. A, 301, 3-4, 275-280 (2002) · Zbl 0997.34084 · doi:10.1016/S0375-9601(02)00972-6
[17] Kudryashov, N. A., One Generalization of the Second Painlevé Hierarchy, J. Phys. A, 35, 1, 93-99 (2002) · Zbl 1007.34083 · doi:10.1088/0305-4470/35/1/308
[18] Kudryashov, N. A., Amalgamations of the Painlevé Equations, J. Math. Phys., 44, 12, 6160-6178 (2003) · Zbl 1063.34085 · doi:10.1063/1.1623332
[19] Kawai, T.; Koike, T.; Nishikawa, Y.; Takei, Y.; Loday-Richaud, M., On the Stokes Geometry of Higher Order Painlevé Equations, Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes: 2. Volume en l’honneur de Jean-Pierre Ramis, 117-166 (2004), Paris: Soc. Math. de France, Paris · Zbl 1086.34072
[20] Shimomura, S., Poles and α-Poles of Meromorphic Solutions of the First Painlevé Hierarchy, Publ. Res. Inst. Math. Sci., 40, 2, 471-485 (2004) · Zbl 1071.34093 · doi:10.2977/prims/1145475811
[21] Gordoa, P. R.; Joshi, N.; Pickering, A., Second and Fourth Painlevé Hierarchies and Jimbo-Miwa Linear Problems, J. Math. Phys., 47, 7, 073504 (2006) · Zbl 1112.37069 · doi:10.1063/1.2217647
[22] Kudryashov, N. A., Special Polynomials Associated with Some Hierarchies, Phys. Lett. A, 372, 12, 1945-1956 (2008) · Zbl 1220.34111 · doi:10.1016/j.physleta.2007.10.087
[23] Aoki, T., Multiple-Scale Analysis for Higher-Order Painlevé Equations, RIMS Kôkyûroke Bessatsu, B5, 89-98 (2008) · Zbl 1156.34044
[24] Borisov, A. V.; Kudryashov, N. A., Paul Painlevé and His Contribution to Science, Regul. Chaotic Dyn., 19, 1, 1-19 (2014) · Zbl 1333.01025 · doi:10.1134/S1560354714010018
[25] Painlevé, P., Sur les équations différentielles du second ordre et d’ordre supérieure dont l’intégrale générale est uniforme, Acta Math., 25, 1-85 (1902) · JFM 32.0340.01 · doi:10.1007/BF02419020
[26] Gambier, B., Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critique fixes, C. R. Acad. Sci. Paris, 143, 2, 741-743 (1906) · JFM 37.0341.03
[27] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0762.35001
[28] Ablowitz, M. J.; Segur, H., Exact Linearization of a Painlevé Transcendent, Phys. Rev. Lett., 38, 20, 1103-1106 (1977) · doi:10.1103/PhysRevLett.38.1103
[29] Ablowitz, M. J.; Ramani, A.; Segur, H., A Connection between Nonlinear Evolution Equations and Ordinary Differential Equations of P-Type: 1, J. Math. Phys., 21, 4, 715-721 (1980) · Zbl 0445.35056 · doi:10.1063/1.524491
[30] Gromak, V. I.; Laine, I.; Shimomura, S., Painlevé Differential Equations in the Complex Plane (2002), New York: de Gruyter, New York · Zbl 1043.34100
[31] Gaiur, I. Y.; Kudryashov, N. A., Weak Nonlinear Asymptotic Solutions for the Fourth Order Analogue of the Second Painlevé Equation, Regul. Chaotic Dyn., 22, 3, 266-271 (2017) · Zbl 1387.34124 · doi:10.1134/S1560354717030066
[32] Polyanin, A. D.; Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations (2002), Boca Raton, Fla.: Chapman & Hall/CRC, Boca Raton, Fla. · Zbl 1031.35001
[33] Kudryashov, N. A., Two Hierarchies of Ordinary Differential Equations and Their Properties, Phys. Lett. A, 252, 3-4, 173-179 (1999) · Zbl 0948.34069 · doi:10.1016/S0375-9601(98)00950-5
[34] Kudryashov, N. A., Double Bäcklund Transformations and Special Integrals for the K_II Hierarchy, Phys. Lett. A, 273, 3, 194-202 (2000) · Zbl 1115.37355 · doi:10.1016/S0375-9601(00)00479-5
[35] Kudryashov, N. A., Higher Painlevé Transcendents As Special Solutions of Some Nonlinear Integrable Hierarchies, Regul. Chaotic Dyn., 19, 1, 48-63 (2014) · Zbl 1328.35193 · doi:10.1134/S1560354714010043
[36] Kudryashov, N. A.; Pickering, A., Rational Solutions for Schwarzian Integrable Hierarchies, J. Phys. A, 31, 47, 9505-9518 (1998) · Zbl 0985.37073 · doi:10.1088/0305-4470/31/47/011
[37] Kudryashov, N. A., Soliton, Rational and Special Solutions of the Korteweg - de Vries Hierarchy, Appl. Math. Comput., 217, 4, 1774-1779 (2010) · Zbl 1203.35229
[38] Gordoa, P. R.; Pickering, A., On a Extended Second Painlevé Hierarchy, J. Differential Equations, 263, 7, 2070-4125 (2017) · Zbl 1372.34135 · doi:10.1016/j.jde.2017.05.014
[39] Gordoa, P. R.; Pickering, A., Bäcklund Transformations for a New Extended Painlevé Hierarchy, Commun. Nonlinear Sci. Numer. Simul., 69, 78-97 (2019) · Zbl 1524.34227 · doi:10.1016/j.cnsns.2018.09.014
[40] Kudryashov, N. A., Nonlinear Differential Equations Associated with the First Painlevé Hierarchy, Appl. Math. Lett., 90, 223-228 (2019) · Zbl 1414.34071 · doi:10.1016/j.aml.2018.11.013
[41] Weiss, J., The Painlevé Property for Partial Differential Equations: 2. Bäcklund Transformation, Lax Pairs, and the Schwarzian Derivative, J. Math. Phys., 24, 6, 1405-1413 (1983) · Zbl 0531.35069 · doi:10.1063/1.525875
[42] Weiss, J., On Classes of Integrable Systems and the Painlevé Property, J. Math. Phys., 25, 1, 13-24 (1984) · Zbl 0565.35094 · doi:10.1063/1.526009
[43] Kozlov, V. V., Rational Integrals of Quasi-Homogeneous Dynamical Systems, J. Appl. Math. Mech., 79, 3, 209-216 (2015) · Zbl 1432.37081 · doi:10.1016/j.jappmathmech.2015.09.001
[44] Kozlov, V. V., On Rational Integrals of Geodesic Flows, Regul. Chaotic Dyn., 19, 6, 601-606 (2014) · Zbl 1343.37047 · doi:10.1134/S156035471406001X
[45] Kozlov, V. V., Symmetries, Topology and Resonances in Hamiltonian Mechanics (1996), Berlin: Springer, Berlin · Zbl 1001.37507
[46] Yablonskii, A. I., On Rational Solutions of the Second Painlevé Equation, Vesti AN BSSR, Ser. Fiz.- Tech. Nauk, 1959, no. 3, pp. 30-35 (Russian).
[47] Vorob’Ev, A. P., On Rational Solutions of the Second Painlevé Equation, Differ. Uravn., 1, 79-81 (1965)
[48] Demina, M. V.; Kudryashov, N. A., The Generalized Yablonskii-Vorob’ev Polynomials and Their Properties, Phys. Lett. A, 372, 29, 4885-4890 (2008) · Zbl 1221.33033 · doi:10.1016/j.physleta.2008.04.069
[49] Kudryashov, N. A., Rational and Special Solutions for Some Painlevé Hierarchies, Regul. Chaotic Dyn., 24, 1, 90-100 (2019) · Zbl 1415.34132 · doi:10.1134/S1560354719010052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.