×

On statistics of bi-orthogonal eigenvectors in real and complex Ginibre ensembles: combining partial Schur decomposition with supersymmetry. (English) Zbl 1448.60022

Summary: We suggest a method of studying the joint probability density (JPD) of an eigenvalue and the associated ‘non-orthogonality overlap factor’ (also known as the ‘eigenvalue condition number’) of the left and right eigenvectors for non-selfadjoint Gaussian random matrices of size \(N\times N\). First we derive the general finite \(N\) expression for the JPD of a real eigenvalue \(\lambda\) and the associated non-orthogonality factor in the real Ginibre ensemble, and then analyze its ‘bulk’ and ‘edge’ scaling limits. The ensuing distribution is maximally heavy-tailed, so that all integer moments beyond normalization are divergent. A similar calculation for a complex eigenvalue \(z\) and the associated non-orthogonality factor in the complex Ginibre ensemble is presented as well and yields a distribution with the finite first moment. Its ‘bulk’ scaling limit yields a distribution whose first moment reproduces the well-known result of J. T. Chalker and B. Mehlig [“Eigenvector statistics in non-Hermitian random matrix ensembles”, Phys. Rev. Lett. 81, No. 16, 3367–3370 (1998; doi:10.1103/physrevlett.81.3367)], and we provide the ‘edge’ scaling distribution for this case as well. Our method involves evaluating the ensemble average of products and ratios of integer and half-integer powers of characteristic polynomials for Ginibre matrices, which we perform in the framework of a supersymmetry approach. Our paper complements recent studies by P. Bourgade and G. Dubach [Probab. Theory Relat. Fields 177, No. 1–2, 397–464 (2020; Zbl 1451.60015)].

MSC:

60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)

Citations:

Zbl 1451.60015

Software:

Eigtool

References:

[1] Belinschi, S.; Nowak, M. A.; Speicher, R.; Tarnowski, W., Squared eigenvalue condition numbers and eigenvector correlations from the single ring theorem, J. Phys. A Math. Theor., 50, 105204, (2017) · Zbl 1361.81051 · doi:10.1088/1751-8121/aa5451
[2] Borodin, A.; Strahov, E., Averages of characteristic polynomials in random matrix theory, Commun. Pure Appl. Math., 59, 161-253, (2006) · Zbl 1155.15304 · doi:10.1002/cpa.20092
[3] Bourgade, P., Dubach, G.: The distribution of overlaps between eigenvectors of Ginibre matrices (2018). arXiv:1801.01219
[4] Burda, Z.; Grela, J.; Nowak, M. A.; Tarnowski, W.; Warchol, P., Dysonian dynamics of the Ginibre ensemble, Phys. Rev. Lett., 113, 104102, (2014) · doi:10.1103/PhysRevLett.113.104102
[5] Burda, Z.; Grela, J.; Nowak, M. A.; Tarnowski, W.; Warchol, P., Unveiling the significance of eigenvectors in diffusing non-Hermitian matrices by identifying the underlying Burgers dynamics, Nucl. Phys. B, 897, 421-447, (2015) · Zbl 1329.82091 · doi:10.1016/j.nuclphysb.2015.06.002
[6] Burda, Z.; Spisak, B. J.; Vivo, P., Eigenvector statistics of the product of Ginibre matrices, Phys. Rev. E, 95, 022134, (2017) · doi:10.1103/PhysRevE.95.022134
[7] Chalker, J. T.; Mehlig, B., Eigenvector statistics in non-Hermitian random matrix ensembles, Phys. Rev. Lett., 81, 3367-3370, (1998) · doi:10.1103/PhysRevLett.81.3367
[8] Desrosiers, P.; Forrester, P. J., A note on biorthogonal ensembles, J. Approx. Theor., 152, 167-187, (2008) · Zbl 1149.42014 · doi:10.1016/j.jat.2007.08.006
[9] Edelman, A.; Kostlan, E.; Shub, M., How many eigenvalues of a real matrix are real?, J. Am. Math. Soc., 7, 247-267, (1994) · Zbl 0790.15017 · doi:10.1090/S0894-0347-1994-1231689-0
[10] Edelman, A., The probability that a random real Gaussian matrix has \(k\) real eigenvalues, related distributions, and the circular law, J. Multivar. Anal., 60, 203-232, (1997) · Zbl 0886.15024 · doi:10.1006/jmva.1996.1653
[11] Forrester, P. J.; Nagao, T., Skew orthogonal polynomials and the partly symmetric real Ginibre ensemble, J. Phys. A Math. Theor., 41, 375003, (2008) · Zbl 1185.15032 · doi:10.1088/1751-8113/41/37/375003
[12] Fyodorov, Y. V.; Sommers, H.-J., Statistics of resonance poles, phaseshifts and time delays in quantum chaotic scattering: random matrix approach for systems with broken time-reversal invariance, J. Math. Phys., 38, 1918-1981, (1997) · Zbl 0872.58072 · doi:10.1063/1.531919
[13] Fyodorov, Y. V.; Mehlig, B., Statistics of resonances and nonorthogonal eigenfunctions in a model for single-channel chaotic scattering, Phys. Rev. E, 66, 045202(r), (2002) · doi:10.1103/PhysRevE.66.045202
[14] Fyodorov, Y. V., Negative moments of characteristic polynomials of random matrices: ingham-Siegel integral as an alternative to Hubbard-Stratonovich transformation, Nucl. Phys. B, 621, 643-674, (2002) · Zbl 1024.82013 · doi:10.1016/S0550-3213(01)00508-9
[15] Fyodorov, Y. V.; Strahov, E., On correlation functions of characteristic polynomials for chiral Gaussian unitary ensemble, Nucl. Phys. B, 647 [FS], 581-597, (2002) · Zbl 1001.15016 · doi:10.1016/S0550-3213(02)00904-5
[16] Fyodorov, Y. V.; Strahov, E., Characteristic polynomials of random Hermitian matrices and duistermaat-heckman localization on non-compact Kähler manifolds, Nucl. Phys. B, 630 [PM], 453-491, (2002) · Zbl 0994.15025 · doi:10.1016/S0550-3213(02)00185-2
[17] Fyodorov, Y. V.; Akemann, G., On the supersymmetric partition function in QCD-inspired random matrix models, JETP Lett., 77, 438-441, (2003) · doi:10.1134/1.1587180
[18] Fyodorov, Y. V.; Sommers, H.-J., Random matrices close to Hermitian or unitary: overview of methods and results, J. Phys. A Math. Gen., 36, 3303-3347, (2003) · Zbl 1069.82006 · doi:10.1088/0305-4470/36/12/326
[19] Fyodorov, Y. V.; Strahov, E., An exact formula for general spectral correlation function of random Hermitian matrices, J. Phys. A Math. Gen., 36, 3203-3213, (2003) · Zbl 1044.81050 · doi:10.1088/0305-4470/36/12/320
[20] Fyodorov, Y. V.; Khoruzhenko, B. A., On absolute moments of characteristic polynomials of a certain class of complex random matrices, Commun. Math. Phys., 273, 561-599, (2007) · Zbl 1185.15033 · doi:10.1007/s00220-007-0270-y
[21] Fyodorov, Y.V., Savin, D.V.: Resonance scattering in chaotic systems, chapter 34. In: Akemann, G., Baik, J., Di Francesco, P. (eds.), The Oxford Handbook of Random Matrix Theory, p. 703. Oxford University Press, Oxford (2011)
[22] Fyodorov, Y. V.; Savin, D. V., Statistics of resonance width shifts as a signature of eigenfunction nonorthogonality, Phys. Rev. Lett., 108, 184101, (2012) · doi:10.1103/PhysRevLett.108.184101
[23] Fyodorov, Y. V.; Nock, A., On random matrix averages involving half-integer powers of GOE characteristic polynomials, J. Stat. Phys., 159, 731-751, (2015) · Zbl 1328.81121 · doi:10.1007/s10955-015-1209-x
[24] Fyodorov, Y. V.; Khoruzhenko, B. A., Nonlinear analogue of the may-Wigner instability transition, Proc. Natl. Acad. Sci. USA, 113, 6827-6832, (2016) · Zbl 1355.92139 · doi:10.1073/pnas.1601136113
[25] Fyodorov, Y. V.; Grela, J.; Strahov, E., On characteristic polynomials for a generalized chiral random matrix ensemble with a source, J. Phys. A Math. Theor., 51, 134003, (2018) · Zbl 1388.60025 · doi:10.1088/1751-8121/aaae2a
[26] Gangulia, S.; Huhc, D.; Sompolinsky, H., Memory traces in dynamical systems, Proc. Natl. Acad. Sci. USA, 105, 18970-18975, (2008) · doi:10.1073/pnas.0804451105
[27] Goetschy, A.; Skipetrov, S. E., Non-Hermitian Euclidean random matrix theory, Phys. Rev. E, 84, 011150, (2011) · Zbl 1210.82065 · doi:10.1103/PhysRevE.84.011150
[28] Gradshteyn L.S., Ryzhik I.M.: Tables of Integers, Series and Products, 6th ed. Academic Press, New York (2000) · Zbl 0981.65001
[29] Grela, J., What drives transient behaviour in complex systems?, Phys. Rev. E, 96, 022316, (2017) · doi:10.1103/PhysRevE.96.022316
[30] Grela, J.; Guhr, T., Exact spectral densities of complex noise-plus-structure random matrices, Phys. Rev. E, 94, 042130, (2016) · doi:10.1103/PhysRevE.94.042130
[31] Gros, J.-B.; Kuhl, U.; Legrand, O.; Mortessagne, F.; Richalot, E.; Savin, D. V., Experimental width shift distribution: a test of nonorthogonality for local and global perturbations, Phys. Rev. Lett., 113, 224101, (2014) · doi:10.1103/PhysRevLett.113.224101
[32] Guhr, T.: Supersymmetry. Chapter 7 in The Oxford Handbook of Random Matrix Theory. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford University Press (2011). arXiv:1005.0979 [math-ph] · Zbl 1225.15004
[33] Janik, R. A.; Nörenberg, W.; Nowak, M. A.; Papp, G.; Zahed, I., Correlations of eigenvectors for non-Hermitian random-matrix models, Phys. Rev. E, 60, 2699-2705, (1999) · doi:10.1103/PhysRevE.60.2699
[34] Khoruzhenko, B.A., Sommers, H.-J.: Non-Hermitian ensembles. Chapter 18 in The Oxford Handbook of Random Matrix Theory. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford University Press (2011)
[35] Kozhan, R., Rank one non-Hermitian perturbations of Hermitian β-ensembles of random matrices, J. Stat. Phys., 168, 92-108, (2017) · Zbl 1372.15030 · doi:10.1007/s10955-017-1792-0
[36] May, R. M., Will a large complex system be stable?, Nature, 238, 413-414, (1972) · doi:10.1038/238413a0
[37] Mehlig, B.; Chalker, J. T., Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles, J. Math. Phys., 41, 3233-3256, (2000) · Zbl 0977.82023 · doi:10.1063/1.533302
[38] Mehlig, B.; Santer, M., Universal eigenvector statistics in a quantum scattering ensemble, Phys. Rev. E, 63, 020105(r), (2001) · doi:10.1103/PhysRevE.63.020105
[39] Movassagh, R., Eigenvalue attraction, J. Stat. Phys., 162, 615-643, (2016) · Zbl 1356.15016 · doi:10.1007/s10955-015-1424-5
[40] Neri, I., Metz, F.L.: Eigenvalue outliers of non-Hermitian random matrices with a local tree structure. Phys. Rev. Lett. 117(22), 224101 (2016); Erratum Phys. Rev. Lett. 118, 019901 (2017)
[41] Nowak, M.A., Tarnowski, W.: Probing non-orthogonality of eigenvectors in non-Hermitian matrix models: diagrammatic approach (2018). arXiv:1801.02526 [math-ph] · Zbl 1395.81159
[42] Osborn, J. C., Universal results from an alternate random matrix model for QCD with a baryon chemical potential, Phys. Rev. Lett., 93, 222001, (2004) · doi:10.1103/PhysRevLett.93.222001
[43] Rotter, I., A non-Hermitian Hamilton operator and the physics of open quantum systems, J. Phys. A Math. Theor., 42, 153001, (2009) · Zbl 1162.81398 · doi:10.1088/1751-8113/42/15/153001
[44] Savin, D. V.; Sokolov, V. V., Quantum versus classical decay laws in open chaotic systems, Phys. Rev. E, 56, r4911-r4913, (1997) · doi:10.1103/PhysRevE.56.R4911
[45] Schomerus, H.; Frahm, K. M.; Patra, M.; Beenakker, C. W.J., Quantum limit of the laser line width in chaotic cavities and statistics of residues of scattering matrix poles, Phys. A, 278, 469-496, (2000) · doi:10.1016/S0378-4371(99)00602-0
[46] Seif, B.; Wettig, T.; Guhr, T., Spectral correlations of the massive QCD Dirac operator at finite temperature, Nucl. Phys. B, 548, 475-490, (1999) · Zbl 0943.81053 · doi:10.1016/S0550-3213(99)00130-3
[47] Trefethen, L. N.; Trefethen, A. E.; Reddy, S. C.; Driscoll, T. A., Hydrodynamic stability without eigenvalues, Science, 261, 578-584, (1993) · Zbl 1226.76013 · doi:10.1126/science.261.5121.578
[48] Trefethen L.N., Embree M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005) · Zbl 1085.15009
[49] Walters, M.; Starr, S., A note on mixed matrix moments for the complex Ginibre ensemble, J. Math. Phys., 56, 013301, (2015) · Zbl 1309.82035 · doi:10.1063/1.4904451
[50] Wirtz, T.; Akemann, G.; Guhr, T.; Kieburg, M.; Wegner, R., The smallest eigenvalue distribution in the real wishartlaguerre ensemble with even topology, J. Phys. A Math. Theor., 48, 245202, (2015) · Zbl 1320.15034 · doi:10.1088/1751-8113/48/24/245202
[51] Zirnbauer, M.R.: The supersymmetry method of random matrix theory. In: Francoise, J.-P., Naber, G.L., Tsun, T.S. (ed.) Encyclopedia of Mathematical Physics. Academic Press, Oxford (2006). arXiv:math-ph/0404057]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.