×

On random matrix averages involving half-integer powers of GOE characteristic polynomials. (English) Zbl 1328.81121

Summary: Correlation functions involving products and ratios of half-integer powers of characteristic polynomials of random matrices from the Gaussian orthogonal ensemble (GOE) frequently arise in applications of random matrix theory (RMT) to physics of quantum chaotic systems, and beyond. We provide an explicit evaluation of the large-\(N\) limits of a few non-trivial objects of that sort within a variant of the supersymmetry formalism, and via a related but different method. As one of the applications we derive the distribution of an off-diagonal entry \(K_{ab}\) of the resolvent (or Wigner \(K\)-matrix) of GOE matrices which, among other things, is of relevance for experiments on chaotic wave scattering in electromagnetic resonators.

MSC:

81Q50 Quantum chaos
15B52 Random matrices (algebraic aspects)

References:

[1] Brezin, E., Hikami, S.: Characteristic polynomials of random matrices. Commun. Math. Phys. 214, 111-135 (2000) · Zbl 1042.82017 · doi:10.1007/s002200000256
[2] Fyodorov, Y.V., Strahov, E.: An exact formula for general spectral correlation function of random Hermitian matrices. J. Phys. A: Math. Gen. 36(12), 3203-3213 (2003) · Zbl 1044.81050 · doi:10.1088/0305-4470/36/12/320
[3] Strahov, E., Fyodorov, Y.V.: Universal results for correlations of characteristic polynomials: Riemann-Hilbert approach. Commun. Math. Phys. 241(2-3), 343-382 (2003) · Zbl 1098.82018 · doi:10.1007/s00220-003-0938-x
[4] Baik, J., Deift, P., Strahov, E.: Products and ratios of characteristic polynomials of random Hermitian matrices. J. Math. Phys. 44(8), 3657-3670 (2003) · Zbl 1062.15014 · doi:10.1063/1.1587875
[5] Borodin, A., Strahov, E.: Averages of characteristic polynomials in random matrix theory. Commun. Pure Appl. Math. 59(2), 161-253 (2006) · Zbl 1155.15304 · doi:10.1002/cpa.20092
[6] Kieburg, M., Guhr, T.: Derivation of determinantal structures for random matrix ensembles in a new way. J. Phys. A: Math. Theor. 43(7), 075201 (2010) · Zbl 1189.82055 · doi:10.1088/1751-8113/43/7/075201
[7] Kieburg, M., Guhr, T.: A new approach to derive Pfaffian structures for random matrix ensembles. J. Phys. A: Math. Theor. 43(13), 135204 (2010) · Zbl 1188.81080 · doi:10.1088/1751-8113/43/13/135204
[8] Shcherbina, M.: On universality for orthogonal ensembles of random matrices. Commun. Math. Phys. 285, 957-974 (2009) · Zbl 1190.82020 · doi:10.1007/s00220-008-0648-5
[9] Erdős, L., Schlein, B., Yau, H.-T., Yin, J.: The local relaxation flow approach to universality of the local statistics for random matrices. Ann. Inst. H. Poincare Probab. Stat. 48(1), 1-46 (2012) · Zbl 1285.82029 · doi:10.1214/10-AIHP388
[10] Tao, T.; Vu, V.: Random matrices: The Universality phenomenon for Wigner ensembles. arXiv:1202.0068 · Zbl 1310.15077
[11] Guhr, T., Müller-Groeling, A., Weidenmüller, H.A.: Random-matrix theories in quantum physics: common concepts. Phys. Rep. 299(4-6), 189-425 (1998) · doi:10.1016/S0370-1573(97)00088-4
[12] Bohigas, O., Giannoni, M.J., Schmit, C.: Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1-4 (1984) · Zbl 1119.81326 · doi:10.1103/PhysRevLett.52.1
[13] Müller, S., Heusler, S., Altland, A., Braun, P., Haake, F.: Periodic-orbit theory of universal level correlations in quantum chaos New. J. Phys. 11, 103025 (2009) · Zbl 1198.37037
[14] Itzykson, C., Zuber, J.B.: The planar approximation. II. J. Math. Phys. 21(3), 411-421 (1980) · Zbl 0997.81549 · doi:10.1063/1.524438
[15] Harish-Chandra. Differential operators on a semisimple Lie algebra. Am. J. Math. 79, 87-120 (1957) · Zbl 0072.01901
[16] Beenakker, C.W.J.: Random-matrix theory of quantum size effects on nuclear magnetic resonance in metal particles. Phys. Rev. B 50, 15170-15173 (1994) · doi:10.1103/PhysRevB.50.15170
[17] Jiang, T.: How many entries of a typical orthogonal matrix can be approximated by independent normals? Ann. Probab. 34, 1497-1529 (2006) · Zbl 1107.15018 · doi:10.1214/009117906000000205
[18] Fyodorov, Y.V., Khoruzhenko, B.A., Nock, A.: Universal K-matrix distribution in \[\beta =2\] β=2 ensembles of random matrices. J. Phys. A: Math. Theor. 46, 262001 (2013) · Zbl 1270.81208 · doi:10.1088/1751-8113/46/26/262001
[19] Fyodorov, Y.V., Sommers, H.-J.: Universality of “Level Curvature” distributions for large random matrices: systematic analytical approaches. Z. Phys. B 99, 123-135 (1995) · doi:10.1007/s002570050018
[20] von Oppen, F.: Exact distributions of eigenvalue curvatures for time-reversal-invariant chaotic systems. Phys. Rev. E 51, 2647-2650 (1995) · doi:10.1103/PhysRevE.51.2647
[21] Fyodorov, Y.V.: Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. Phys. Rev. Lett. 92(24) 240601 (2004); Erratum ibid 93(14) 149901(E) (2004) · Zbl 1267.82055
[22] Fyodorov, Y.V.: Counting stationary points of a random landscape as a random matrix problem. Acta Phys. Pol. B 36(9), 2699-2707 (2005) · Zbl 1371.82050
[23] Akemann, G., Guhr, T., Kieburg, M., Wegner, R., Wirtz, T.: Completing the picture for the smallest eigenvalue of real Wishart matrices. Phys. Rev. Lett. 113, 250201 (2014) · Zbl 1320.15034
[24] Taniguchi, N., Prigodin, V.N.: Distribution of the absorption by chaotic states in quantum dots. Phys. Rev. B 54, R14305(R) (1996)
[25] Savin, D.V., Sommers, H.-J., Fyodorov, Y.V.: Universal statistics of the local Green’s function in wave chaotic systems with absorption. JETP Lett. 82, 544-548 (2005) · doi:10.1134/1.2150877
[26] Fyodorov, Y.V., Savin, D.V., Sommers, H.-J.: Scattering, reflection and impedance of waves in chaotic and disordered systems with absorption. J. Phys. A: Math. Gen. 38(49), 10731-10760 (2005) · Zbl 1082.81035 · doi:10.1088/0305-4470/38/49/017
[27] Guionnet, A.: private communication
[28] Fyodorov, Y.V., Savin, D.V.: Resonance scattering of waves in chaotic systems. In: Akemann, G., et al. (eds.) The Oxford Handbook of Random Matrix Theory, pp. 703-722. Oxford University Press (2011), [ arXiv:1003.0702] · Zbl 1236.81180
[29] Fyodorov, Y.V., Savin, D.V.: Statistics of resonance width shifts as a signature of eigenfunction nonorthogonality. Phys. Rev. Lett. 108(18), 184101 (2012) · doi:10.1103/PhysRevLett.108.184101
[30] Schomerus, H., Frahm, K.M., Patra, M., Beenakker, C.W.J.: Quantum limit of the laser line width in chaotic cavities and statistics of residues of scattering matrix poles. Phys. A. 278(3-4), 469-496 (2000) · doi:10.1016/S0378-4371(99)00602-0
[31] Fyodorov, Y.V., Savin, D.V.: Resonance Widths Distribution in RMT: systematic approximation for weak coupling regime beyond Porter-Thomas (under preparation) · Zbl 1024.82013
[32] Verbaarschot, J.J.M., Weidenmüller, H.A., Zirnbauer, M.R.: Grassmann integration in stochastic quantum physics: the case of compound-nucleus scattering. Phys. Rep. 129(6), 367-438 (1985) · doi:10.1016/0370-1573(85)90070-5
[33] Sokolov, V.V., Zelevinsky, V.G.: Dynamics and statistics of unstable quantum states. Nucl. Phys. A 504(3), 562-588 (1989) · doi:10.1016/0375-9474(89)90558-7
[34] Hemmady, S., Zheng, X., Ott, E., Antonsen, T.M., Anlage, S.M.: Universal impedance fluctuations in wave chaotic systems. Phys. Rev. Lett. 94(1), 014102 (2005) · doi:10.1103/PhysRevLett.94.014102
[35] Hemmady, S., Zheng, X., Hart, J., Antonsen Jr, T.M., Ott, E., Anlage, S.M.: Universal properties of two-port scattering, impedance, and admittance matrices of wave-chaotic systems. Phys. Rev. E 74, 036213 (2006) · doi:10.1103/PhysRevE.74.036213
[36] Fyodorov, Y.V., Sommers, H.-J.: Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: random matrix approach for systems with broken time-reversal invariance. J. Math. Phys. 38(4), 1918-1981 (1997) · Zbl 0872.58072 · doi:10.1063/1.531919
[37] Fyodorov, Y.V., Williams, I.: Replica symmetry breaking condition exposed by random matrix calculation of landscape complexity. J. Stat. Phys. 129(5-6), 1081-1116 (2007) · Zbl 1156.82355 · doi:10.1007/s10955-007-9386-x
[38] Aizenman, M., Warzel, S.: On the ubiquity of the Cauchy distribution in spectral problems. Probab. Theory Relat. Fields (2014). doi:10.1007/s00440-014-0587-3 · Zbl 1330.60042
[39] Dietz, B., Friedrich, T., Harney, H.L., Miski-Oglu, M., Richter, A., Schäfer, F., Weidenmüller, H.A.: Quantum chaotic scattering in microwave resonators. Phys. Rev. E 81(3), 036205 (2010) · doi:10.1103/PhysRevE.81.036205
[40] Kumar, S., Nock, A., Sommers, H.-J., Guhr, T., Dietz, B., Miski-Oglu, M., Richter, A., Schäfer, F.: Distribution of scattering matrix elements in quantum chaotic scattering. Phys. Rev. Lett. 111(3), 030403 (2013) · doi:10.1103/PhysRevLett.111.030403
[41] Nock, A., Kumar, S., Sommers, H.-J., Guhr, T.: Distributions of off-diagonal scattering matrix elements: exact results. Ann. Phys. 342, 103-132 (2014) · Zbl 1342.81648 · doi:10.1016/j.aop.2013.11.006
[42] Brouwer, P.W.: Generalized circular ensemble of scattering matrices for a chaotic cavity with nonideal leads. Phys. Rev. B 51(23), 16878-16884 (1995) · doi:10.1103/PhysRevB.51.16878
[43] Fyodorov, Y.V., Keating, J.P.: Negative moments of characteristic polynomials of random GOE matrices and singularity-dominated strong fluctuations. J. Phys. A: Math. Gen. 36, 4035-4046 (2003) · Zbl 1049.82035 · doi:10.1088/0305-4470/36/14/308
[44] Forrester, P.J., Keating, J.P.: Singularity dominated strong fluctuations for some random matrix averages. Commun. Math. Phys. 250, 119-131 (2004) · Zbl 1087.82012 · doi:10.1007/s00220-004-1121-8
[45] Guhr, T.: Supersymmetry. In: Akemann, G., et al. (eds.) The Oxford Handbook of Random Matrix Theory. Oxford University Press, pp. 135-154 (2011) [ arXiv:1005.0979] · Zbl 1236.81115
[46] Fyodorov, Y.V.: Negative moments of characteristic polynomials of random matrices: Ingham-Siegel integral as an alternative to Hubbard-Stratonovich transformation. Nucl. Phys. B 621, 643-674 (2002) · Zbl 1024.82013 · doi:10.1016/S0550-3213(01)00508-9
[47] Nock, A.: PhD-thesis. Queen Mary University of London (under preparation) · Zbl 0994.15025
[48] Fyodorov, Y.V., Strahov, E.: Characteristic polynomials of random Hermitian matrices and Duistermaat-Heckman localisation on non-compact Kähler manifolds. Nucl. Phys. B 630, 453-491 (2002) · Zbl 0994.15025 · doi:10.1016/S0550-3213(02)00185-2
[49] Shcherbina, T.: Universality of the second mixed moment of the characteristic polynomials of the 1D band matrices: real symmetric case. e-preprint arXiv:1410.3084 · Zbl 1320.15033
[50] Kösters, H.: On the second-order correlation function of the characteristic polynomial of a real-symmetric Wigner matrix. Electron. Commun. Probab. 13, 435-447 (2008) · Zbl 1189.60019 · doi:10.1214/ECP.v13-1400
[51] Desrosiers, P.: Duality in random matrix ensembles for all \[\beta\] β. Nucl. Phys. B 817, 224-251 (2009) · Zbl 1194.15032 · doi:10.1016/j.nuclphysb.2009.02.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.