×

Reduced order optimal control of the convective FitzHugh-Nagumo equations. (English) Zbl 1448.49038

Summary: In this paper, we compare three model order reduction methods: the proper orthogonal decomposition (POD), discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD) for the optimal control of the convective FitzHugh-Nagumo (FHN) equations. The convective FHN equations consist of the semi-linear activator and the linear inhibitor equations, modeling blood coagulation in moving excitable media. The semilinear activator equation leads to a non-convex optimal control problem (OCP). The most commonly used method in reduced optimal control is POD. We use DEIM and DMD to approximate efficiently the nonlinear terms in reduced order models. We compare the accuracy and computational times of three reduced-order optimal control solutions with the full order discontinuous Galerkin finite element solution of the convection dominated FHN equations with terminal controls. Numerical results show that POD is the most accurate whereas POD-DMD is the fastest.

MSC:

49M41 PDE constrained optimization (numerical aspects)
49J20 Existence theories for optimal control problems involving partial differential equations
49M05 Numerical methods based on necessary conditions
49M25 Discrete approximations in optimal control
65K10 Numerical optimization and variational techniques
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Software:

CG_DESCENT

References:

[1] Buchholz, R.; Engel, H.; Kammann, E.; Tröltzsch, F., On the optimal control of the Schlögl-model, Comput. Optim. Appl., 56, 1, 153-185 (2013) · Zbl 1273.49006
[2] Casas, E.; Ryll, C.; Tröltzsch, F., Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems, Comput. Methods Appl. Math., 13, 4, 415-442 (2013) · Zbl 1393.49019
[3] Casas, E.; Ryll, C.; Tröltzsch, F., Second order and stability analysis for optimal sparse control of the FitzHugh-Nagumo equation, SIAM J. Control Optim., 53, 4, 2168-2202 (2015) · Zbl 1326.49032
[4] Ryll, C.; Löber, J.; Martens, S.; Engel, H.; Tröltzsch, F., Analytical, optimal, and sparse optimal control of traveling wave solutions to reaction-diffusion systems, (Schöll, E.; Klapp, S. H. L.; Hövel, P., Control of Self-Organizing Nonlinear Systems (2016), Springer International Publishing), 189-210
[5] Borzi, A.; Griesse, R., Distributed optimal control of lambda-omega systems, J. Numer. Math., 14, 1, 17-40 (2006) · Zbl 1104.65063
[6] Trélat, E.; Zhu, J.; Zuazua, E., Allee optimal control of a system in ecology, Math. Models Methods Appl. Sci., 28, 09, 1665-1697 (2018) · Zbl 1411.93198
[7] Öz Bakan, H.; Yılmaz, F.; Weber, G.-W., A discrete optimality system for an optimal harvesting problem, Comput. Manag. Sci., 14, 4, 519-533 (2017) · Zbl 1406.91296
[8] Uzunca, M.; Küçükseyhan, T.; Yücel, H.; Karasözen, B., Optimal control of convective FitzHugh-Nagumo Equation, Comput. Math. Appl., 73, 9, 2151-2169 (2017) · Zbl 1373.65045
[9] Garvie, M. R.; Maini, P. K.; Trenchea, C., An efficient and robust numerical algorithm for estimating parameters in Turing systems, J. Comput. Phys., 229, 19, 7058-7071 (2010) · Zbl 1195.92005
[10] Garvie, M.; Trenchea, C., Identification of space-time distributed parameters in the Gierer-Meinhardt reaction-diffusion system, SIAM J. Appl. Math., 74, 1, 147-166 (2014) · Zbl 1295.49001
[11] Stoll, M.; Pearson, J. W.; Maini, P. K., Fast solvers for optimal control problems from pattern formation, J. Comput. Phys., 304, 27-45 (2016) · Zbl 1349.92035
[12] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[13] Riviere, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation (2008), SIAM · Zbl 1153.65112
[14] Akman, T.; Karasözen, B., Variational time discretization methods for optimal control problems governed by diffusion-convection-reaction equations, J. Comput. Appl. Math., 272, 41-56 (2014) · Zbl 1293.49065
[15] Akman, T.; Yücel, H.; Karasözen, B., A priori error analysis of the upwind symmetric interior penalty Galerkin (SIPG) method for the optimal control problems governed by unsteady convection diffusion equations, Comput. Optim. Appl., 57, 3, 703-729 (2014) · Zbl 1301.49072
[16] Yücel, H.; Karasözen, B., Adaptive symmetric interior penalty Galerkin (SIPG) method for optimal control of convection diffusion equations with control constraints, Optimization, 63, 1, 145-166 (2014) · Zbl 1302.65258
[17] Yücel, H.; Stoll, M.; Benner, P., A discontinuous Galerkin method for optimal control problems governed by a system of convection-diffusion {PDEs} with nonlinear reaction terms, Comput. Math. Appl., 70, 10, 2414-2431 (2015) · Zbl 1443.65380
[18] Benner, P.; Sachs, E.; Volkwein, S., Model order reduction for pde constrained optimization, (Leugering, G.; Benner, P.; Engell, S.; Griewank, A.; Harbrecht, H.; Hinze, M.; Rannacher, R.; Ulbrich, S., Trends in PDE Constrained Optimization (2014), Springer International Publishing: Springer International Publishing Cham), 303-326 · Zbl 1327.49043
[19] Gubisch, M.; Volkwein, S., Proper orthogonal decomposition for linear-quadratic optimal control, (Benner, P.; Cohen, A.; Ohlberger, M.; Willcox, K., Model Reduction and Approximation: Theory and Algorithms (2017), Computational Science & Engineering, SIAM), 3-63
[20] Hager, W. W.; Zhang, H., Algorithm 851: CG_DESCENT a conjugate gradient method with guaranteed descent, ACM Trans. Math. Software, 32, 1, 113-137 (2006) · Zbl 1346.90816
[21] Hinze, M.; Volkwein, S., Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition, Comput. Optim. Appl., 39, 3, 319-345 (2008) · Zbl 1191.49040
[22] Kunisch, K.; Volkwein, S., Proper orthogonal decomposition for optimality systems, ESAIM Math. Model. Numer. Anal., 42, 1, 1-23 (2008) · Zbl 1141.65050
[23] Tröltzsch, F.; Volkwein, S., POD a-posteriori error estimates for linear-quadratic optimal control problems, Comput. Optim. Appl., 44, 1, 83-115 (2008) · Zbl 1189.49050
[24] Kammann, E.; Tröltzsch, F.; Volkwein, S., A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD, ESAIM Math. Model. Numer. Anal., 47, 555-581 (2013) · Zbl 1282.49021
[25] Studinger, A.; Volkwein, S., Numerical analysis of POD a-posteriori error estimation for optimal control, (Bredies, K.; Clason, C.; Kunisch, K.; von Winckel, G., Control and Optimization with PDE Constraints (2013), Springer Basel: Springer Basel Basel), 137-158 · Zbl 1275.49050
[26] Kunisch, K.; Müller, M., Uniform convergence of the POD method and applications to optimal control, Discrete Contin. Dyn. Syst., 35, 9, 4477-4501 (2015) · Zbl 1337.65053
[27] Ryll, C.; Tröltzsch, F., Proper orthogonal decomposition in sparse optimal control of some reaction diffusion equations using model predictive control, PAMM, 14, 1, 883-884 (2014)
[28] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339, 9, 667-672 (2004) · Zbl 1061.65118
[29] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764 (2010) · Zbl 1217.65169
[30] Alla, A.; Kutz, J., Nonlinear model order reduction via dynamic mode decomposition, SIAM J. Sci. Comput., 39, 5, B778-B796 (2017) · Zbl 1373.65090
[31] Schmid, P. J., Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5-28 (2010) · Zbl 1197.76091
[32] Rowley, C. W.; Mezić, I.; Bagheri, S.; Schlatter, P.; Henningson, D. S., Spectral analysis of nonlinear flows, J. Fluid Mech., 641, 115-127 (2009) · Zbl 1183.76833
[33] Koopman, B. O., Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad. Sci., 17, 5, 315-318 (1931) · JFM 57.1010.02
[34] Kutz, J. N.; Brunton, S. L.; Brunton, B. W.; Proctor, J. L., Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems (2016), SIAM · Zbl 1365.65009
[35] Ermakova, E. A.; Shnol, E. E.; Panteleev, M. A.; Butylin, A. A.; Volpert, V.; Ataullakhanov, F. I., On propagation of excitation waves in moving media: The FitzHugh-Nagumo model, PLosOne, 4, 2, E4454 (2009)
[36] Ermakova, E.; Panteleev, M.; Shnol, E., Blood coagulation and propagation of autowaves in flow, Pathophysiol. Haemost. Thromb., 34, 135-142 (2005)
[37] FitzHugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 6, 445-466 (1961)
[38] Nagumo, J.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 50, 10, 2061-2070 (1962)
[39] Baumann, M.; Benner, P.; Heiland, J., Space-time Galerkin POD with application in optimal control of semilinear partial differential equations, SIAM J. Sci. Comput., 40, 3, A1611-A1641 (2018) · Zbl 1392.35323
[40] Karasözen, B.; Küçükseyhan, T.; Uzunca, M., Structure preserving integration and model order reduction of skew-gradient reaction-diffusion systems, Ann. Oper. Res., 258, 79-106 (2017) · Zbl 1387.35353
[41] Lobanov, A.; Starozhilova, T., The effect of convective flows on blood coagulation processes, Pathophysiol. Haemost. Thromb., 34, 121-134 (2005)
[42] Ataullakhanov, F. I.; Zarnitsina, V. I.; Pokhilko, A. V.; Lobanov, A. I.; Morozova, O. L., Spatio-temporal dynamics of blood coagulation and pattern formation: A theoretical approach, Int. J. Bifurcation Chaos, 12, 09, 1985-2002 (2002) · Zbl 1049.92023
[43] Vilas, C.; García, M. R.; Banga, J. R.; Alonso, A. A., Robust feed-back control of travelling waves in a class of reaction-diffusion distributed biological systems, Physica D, 237, 18, 2353-2364 (2008) · Zbl 1146.92013
[44] Tröltzsch, F., (Optimal Control of Partial Differential Equations. Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics, vol. 112 (2010), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1195.49001
[45] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90, 1, 117-148 (2001) · Zbl 1005.65112
[46] Tu, J. H.; Rowley, C. W.; Luchtenburg, D. M.; Brunton, S. L.; Kutz, J. N., On dynamic mode decomposition: theory and applications, J. Comput. Dyn., 1, 2, 391-421 (2014) · Zbl 1346.37064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.